121 research outputs found

    An evaluation of the effect of an angiotensin-converting enzyme inhibitor on the growth rate of small abdominal aortic aneurysms: a randomized placebo-controlled trial (AARDVARK)

    Get PDF
    Aims: The AARDVARK (Aortic Aneurysmal Regression of Dilation: Value of ACE-Inhibition on RisK) trial investigated whether ACE-inhibition reduces small abdominal aortic aneurysms (AAA) growth rate, independent of blood pressure (BP) lowering. Methods and results: A three-arm, multi-centre, single-blind, and randomized controlled trial (ISRCTN51383267) was conducted in 14 hospitals in England. Subjects aged β‰₯55 years with AAA diameter 3.0–5.4 cm were randomized 1:1:1 to receive perindopril arginine 10 mg, or amlodipine 5 mg, or placebo and followed 3–6 monthly over 2 years. The primary outcome was aneurysm growth rate (based on external antero-posterior ultrasound measurements in the longitudinal plane), determined by multi-level modelling to provide maximum likelihood estimates. Two hundred and twenty-four subjects were randomized (2011–2013) to placebo (n = 79), perindopril (n = 73), or amlodipine (n = 72). Mean (SD) changes in mid-trial systolic BP (12 months) were 0.5 (14.3) mmHg, P = 0.78 compared with baseline, βˆ’9.5 (13.1) mmHg (P < 0.001), and βˆ’6.7 (12.0) mmHg (P < 0.001), respectively. No significant differences in the modelled annual growth rates were apparent [1.68 mm (SE 0.2), 1.77 mm (0.2), and 1.81 mm (0.2), respectively]. The estimated difference in annual growth between the perindopril and placebo groups was 0.08 mm (CI βˆ’0.50, 0.65). Similar numbers of AAAs in each group reached 5.5 cm diameter and/or underwent elective surgery: 11 receiving placebo, 10 perindopril, and 11 amlodipine. Conclusion: Small AAA growth rates were lower than anticipated, but there was no significant impact of perindopril compared with placebo or placebo and amlodipine, combined despite more effective BP lowering

    Hypertension in Sub-Saharan Africa: Cross-Sectional Surveys in Four Rural and Urban Communities

    Get PDF
    Background: Cardiovascular disease (CVD) is the leading cause of adult mortality in low-income countries but data on the prevalence of cardiovascular risk factors such as hypertension are scarce, especially in sub-Saharan Africa (SSA). This study aims to assess the prevalence of hypertension and determinants of blood pressure in four SSA populations in rural Nigeria and Kenya, and urban Namibia and Tanzania. Methods and Findings: We performed four cross-sectional household surveys in Kwara State, Nigeria; Nandi district, Kenya; Dar es Salaam, Tanzania and Greater Windhoek, Namibia, between 2009-2011. Representative population-based samples were drawn in Nigeria and Namibia. The Kenya and Tanzania study populations consisted of specific target groups. Within a final sample size of 5,500 households, 9,857 non-pregnant adults were eligible for analysis on hypertension. Of those, 7,568 respondents β‰₯18 years were included. The primary outcome measure was the prevalence of hypertension in each of the populations under study. The age-standardized prevalence of hypertension was 19.3% (95%CI:17.3-21.3) in rural Nigeria, 21.4% (19.8-23.0) in rural Kenya, 23.7% (21.3-26.2) in urban Tanzania, and 38.0% (35.9-40.1) in urban Namibia. In individuals with hypertension, the proportion of grade 2 (β‰₯160/100 mmHg) or grade 3 hypertension (β‰₯180/110 mmHg) ranged from 29.2% (Namibia) to 43.3% (Nigeria). Control of hypertension ranged from 2.6% in Kenya to 17.8% in Namibia. Obesity prevalence (BMI β‰₯30) ranged from 6.1% (Nigeria) to 17.4% (Tanzania) and together with age and gender, BMI independently predicted blood pressure level in all study populations. Diabetes prevalence ranged from 2.1% (Namibia) to 3.7% (Tanzania). Conclusion: Hypertension was the most frequently observed risk factor for CVD in both urban and rural communities in SSA and will contribute to the growing burden of CVD in SSA. Low levels of control of hypertension are alarming. Strengthening of health care systems in SSA to contain the emerging epidemic of CVD is urgently needed

    Immunohistochemical, morphological and ultrastructural resemblance between dendritic cells and folliculo-stellate cells in normal human and rat anterior pituitaries

    Get PDF
    Immunolabeling of cryo-sections of human anterior pituitaries obtained at autopsy, and of cryo-sections of freshly prepared rat anterior pituitaries, with a panel of monoclonal antibodies against markers of the monocyte/dendritic cell/macrophage lineage, reveals in both species a characteristic pattern of immunopositive cells, among which many cells with dendritic phenotype are found. Cells characterized by marker expression of MHC-class II determinants and a dendritic morphology are present in both human and rat anterior pituitary. Markers characteristic of dendritic cells such as the L25 antigen and the OX62 antigen were present in anterior pituitaries from human and rat respectively. The population of MHC-class II expressing dendritic cells of the rat anterior pituitary is compared at the ultrastructural level with the folliculo-stellate cell population, which cell type has been previously characterized by its distinctive ultrastructure and immunopositivity for the S100 protein. Using immune-electron microscopy of rat anterior pituitaries fixed with periodate-lysine-paraformaldehyde, we were able to distinguish non-granulated cells expressing MHC-class II determinants, whereas no MHC-class II expression was found in the granulated endocrine cells. Using double immunolabeling of cryo-sections of these rat AP with 25 nm and 15 nm gold labels, we demonstrated an overlap between the populations of MHC-class II-expressing and S100 protein-expressing cells. Furthermore, MHC-class II-expressing and S100-positive cells showed ultrastructural characteristics that have been previously ascribed to folliculo-stellate cells. At the light microscopical level in the rat AP, a proportion of 10 to 20% of the S100-positive cells was found immunopositive for the MHC-class II marker OX6. In the hu

    Differential Regulation of Adhesion Complex Turnover by ROCK1 and ROCK2

    Get PDF
    ROCK1 and ROCK2 are serine/threonine kinases that function downstream of the small GTP-binding protein RhoA. Rho signalling via ROCK regulates a number of cellular functions including organisation of the actin cytoskeleton, cell adhesion and cell migration.In this study we use RNAi to specifically knockdown ROCK1 and ROCK2 and analyse their role in assembly of adhesion complexes in human epidermal keratinocytes. We observe that loss of ROCK1 inhibits signalling via focal adhesion kinase resulting in a failure of immature adhesion complexes to form mature stable focal adhesions. In contrast, loss of ROCK2 expression results in a significant reduction in adhesion complex turnover leading to formation of large, stable focal adhesions. Interestingly, loss of either ROCK1 or ROCK2 expression significantly impairs cell migration indicating both ROCK isoforms are required for normal keratinocyte migration.ROCK1 and ROCK2 have distinct and separate roles in adhesion complex assembly and turnover in human epidermal keratinocytes

    The importance of interacting climate modes on Australia’s contribution to global carbon cycle extremes

    Get PDF
    The global carbon cycle is highly sensitive to climate-driven fluctuations of precipitation, especially in the Southern Hemisphere. This was clearly manifested by a 20% increase of the global terrestrial C sink in 2011 during the strongest sustained La NiΓ±a since 1917. However, inconsistencies exist between El NiΓ±o/La NiΓ±a (ENSO) cycles and precipitation in the historical record; for example, significant ENSO-precipitation correlations were present in only 31% of the last 100 years, and often absent in wet years. To resolve these inconsistencies, we used an advanced temporal scaling method for identifying interactions amongst three key climate modes (El NiΓ±o, the Indian Ocean dipole, and the southern annular mode). When these climate modes synchronised (1999-2012), drought and extreme precipitation were observed across Australia. The interaction amongst these climate modes, more than the effect of any single mode, was associated with large fluctuations in precipitation and productivity. The long-term exposure of vegetation to this arid environment has favoured a resilient flora capable of large fluctuations in photosynthetic productivity and explains why Australia was a major contributor not only to the 2011 global C sink anomaly but also to global reductions in photosynthetic C uptake during the previous decade of drought

    Eukaryote DIRS1-like retrotransposons: an overview

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>DIRS1-like elements compose one superfamily of tyrosine recombinase-encoding retrotransposons. They have been previously reported in only a few diverse eukaryote species, describing a patchy distribution, and little is known about their origin and dynamics. Recently, we have shown that these retrotransposons are common among decapods, which calls into question the distribution of DIRS1-like retrotransposons among eukaryotes.</p> <p>Results</p> <p>To determine the distribution of DIRS1-like retrotransposons, we developed a new computational tool, ReDoSt, which allows us to identify well-conserved DIRS1-like elements. By screening 274 completely sequenced genomes, we identified more than 4000 DIRS1-like copies distributed among 30 diverse species which can be clustered into roughly 300 families. While the diversity in most species appears restricted to a low copy number, a few bursts of transposition are strongly suggested in certain species, such as <it>Danio rerio </it>and <it>Saccoglossus kowalevskii</it>.</p> <p>Conclusion</p> <p>In this study, we report 14 new species and 8 new higher taxa that were not previously known to harbor DIRS1-like retrotransposons. Now reported in 61 species, these elements appear widely distributed among eukaryotes, even if they remain undetected in streptophytes and mammals. Especially in unikonts, a broad range of taxa from Cnidaria to Sauropsida harbors such elements. Both the distribution and the similarities between the DIRS1-like element phylogeny and conventional phylogenies of the host species suggest that DIRS1-like retrotransposons emerged early during the radiation of eukaryotes.</p

    [PSI+] Maintenance Is Dependent on the Composition, Not Primary Sequence, of the Oligopeptide Repeat Domain

    Get PDF
    [PSI+], the prion form of the yeast Sup35 protein, results from the structural conversion of Sup35 from a soluble form into an infectious amyloid form. The infectivity of prions is thought to result from chaperone-dependent fiber cleavage that breaks large prion fibers into smaller, inheritable propagons. Like the mammalian prion protein PrP, Sup35 contains an oligopeptide repeat domain. Deletion analysis indicates that the oligopeptide repeat domain is critical for [PSI+] propagation, while a distinct region of the prion domain is responsible for prion nucleation. The PrP oligopeptide repeat domain can substitute for the Sup35 oligopeptide repeat domain in supporting [PSI+] propagation, suggesting a common role for repeats in supporting prion maintenance. However, randomizing the order of the amino acids in the Sup35 prion domain does not block prion formation or propagation, suggesting that amino acid composition is the primary determinant of Sup35's prion propensity. Thus, it is unclear what role the oligopeptide repeats play in [PSI+] propagation: the repeats could simply act as a non-specific spacer separating the prion nucleation domain from the rest of the protein; the repeats could contain specific compositional elements that promote prion propagation; or the repeats, while not essential for prion propagation, might explain some unique features of [PSI+]. Here, we test these three hypotheses and show that the ability of the Sup35 and PrP repeats to support [PSI+] propagation stems from their amino acid composition, not their primary sequences. Furthermore, we demonstrate that compositional requirements for the repeat domain are distinct from those of the nucleation domain, indicating that prion nucleation and propagation are driven by distinct compositional features

    Computational Identification of Transcriptional Regulators in Human Endotoxemia

    Get PDF
    One of the great challenges in the post-genomic era is to decipher the underlying principles governing the dynamics of biological responses. As modulating gene expression levels is among the key regulatory responses of an organism to changes in its environment, identifying biologically relevant transcriptional regulators and their putative regulatory interactions with target genes is an essential step towards studying the complex dynamics of transcriptional regulation. We present an analysis that integrates various computational and biological aspects to explore the transcriptional regulation of systemic inflammatory responses through a human endotoxemia model. Given a high-dimensional transcriptional profiling dataset from human blood leukocytes, an elementary set of temporal dynamic responses which capture the essence of a pro-inflammatory phase, a counter-regulatory response and a dysregulation in leukocyte bioenergetics has been extracted. Upon identification of these expression patterns, fourteen inflammation-specific gene batteries that represent groups of hypothetically β€˜coregulated’ genes are proposed. Subsequently, statistically significant cis-regulatory modules (CRMs) are identified and decomposed into a list of critical transcription factors (34) that are validated largely on primary literature. Finally, our analysis further allows for the construction of a dynamic representation of the temporal transcriptional regulatory program across the host, deciphering possible combinatorial interactions among factors under which they might be active. Although much remains to be explored, this study has computationally identified key transcription factors and proposed a putative time-dependent transcriptional regulatory program associated with critical transcriptional inflammatory responses. These results provide a solid foundation for future investigations to elucidate the underlying transcriptional regulatory mechanisms under the host inflammatory response. Also, the assumption that coexpressed genes that are functionally relevant are more likely to share some common transcriptional regulatory mechanism seems to be promising, making the proposed framework become essential in unravelling context-specific transcriptional regulatory interactions underlying diverse mammalian biological processes

    Uncoupled activation and cyclization in catmint reductive terpenoid biosynthesis

    Get PDF
    Terpene synthases typically form complex molecular scaffolds by concerted activation and cyclization of linear starting materials in a single enzyme active site. Here we show that iridoid synthase, an atypical reductive terpene synthase, catalyzes the activation of its substrate 8-oxogeranial into a reactive enol intermediate, but does not catalyze the subsequent cyclization into nepetalactol. This discovery led us to identify a class of nepetalactol-related short-chain dehydrogenase enzymes (NEPS) from catmint (Nepeta mussinii) that capture this reactive intermediate and catalyze the stereoselective cyclisation into distinct nepetalactol stereoisomers. Subsequent oxidation of nepetalactols by NEPS1 provides nepetalactones, metabolites that are well known for both insect-repellent activity and euphoric effect in cats. Structural characterization of the NEPS3 cyclase reveals that it binds to NAD+ yet does not utilize it chemically for a non-oxidoreductive formal [4 + 2] cyclization. These discoveries will complement metabolic reconstructions of iridoid and monoterpene indole alkaloid biosynthesis
    • …
    corecore