58 research outputs found

    Brain architecture in the terrestrial hermit crab Coenobita clypeatus (Anomura, Coenobitidae), a crustacean with a good aerial sense of smell

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During the evolutionary radiation of Crustacea, several lineages in this taxon convergently succeeded in meeting the physiological challenges connected to establishing a fully terrestrial life style. These physiological adaptations include the need for sensory organs of terrestrial species to function in air rather than in water. Previous behavioral and neuroethological studies have provided solid evidence that the land hermit crabs (Coenobitidae, Anomura) are a group of crustaceans that have evolved a good sense of aerial olfaction during the conquest of land. We wanted to study the central olfactory processing areas in the brains of these organisms and to that end analyzed the brain of <it>Coenobita clypeatus </it>(Herbst, 1791; Anomura, Coenobitidae), a fully terrestrial tropical hermit crab, by immunohistochemistry against synaptic proteins, serotonin, FMRFamide-related peptides, and glutamine synthetase.</p> <p>Results</p> <p>The primary olfactory centers in this species dominate the brain and are composed of many elongate olfactory glomeruli. The secondary olfactory centers that receive an input from olfactory projection neurons are almost equally large as the olfactory lobes and are organized into parallel neuropil lamellae. The architecture of the optic neuropils and those areas associated with antenna two suggest that <it>C. clypeatus </it>has visual and mechanosensory skills that are comparable to those of marine Crustacea.</p> <p>Conclusion</p> <p>In parallel to previous behavioral findings of a good sense of aerial olfaction in C. clypeatus, our results indicate that in fact their central olfactory pathway is most prominent, indicating that olfaction is a major sensory modality that these brains process. Interestingly, the secondary olfactory neuropils of insects, the mushroom bodies, also display a layered structure (vertical and medial lobes), superficially similar to the lamellae in the secondary olfactory centers of <it>C. clypeatus</it>. More detailed analyses with additional markers will be necessary to explore the question if these similarities have evolved convergently with the establishment of superb aerial olfactory abilities or if this design goes back to a shared principle in the common ancestor of Crustacea and Hexapoda.</p

    Illness cognitions in head and neck squamous cell carcinoma: predicting quality of life outcome

    Get PDF
    Goals of work: This paper presents an observational study of the longitudinal effects of cancer treatment on quality of life (QoL) in patients treated for head and neck squamous cell carcinoma (HNSCC), and evaluated the contribution of patients' baseline illness cognitions to the prediction of QoL 2 years after diagnosis. Patients and methods: One hundred seventy-seven patients eligible for primary treatment for HNSCC completed the Illness Perception Questionnaire-Revised at baseline and the European Organization for Research and Treatment of Cancer Core Quality of Life Questionnaire-30 at baseline, at 1-year and 2-year follow-ups. Main results Compared to baseline, patients reported better emotional functioning at both follow-ups (p<0.001), worse social functioning at 12 months (p<0.05), and better global health

    HER2/neu overexpression in the development of muscle-invasive transitional cell carcinoma of the bladder

    Get PDF
    The mortality from transitional cell carcinoma (TCC) of the urinary bladder increases significantly with the progression of superficial or locally invasive disease (pTa/pT1) to detrusor muscle-invasive disease (pT2+). The most common prognostic markers in clinical use are tumour stage and grade, which are subject to considerable intra- and interobserver variation. Polysomy 17 and HER2/neu gene amplification and protein overexpression have been associated with more advanced disease. Standardised techniques of fluorescence in situ hybridisation and immunohistochemistry, which are currently applied to other cancers with a view to offering anti-HER2/neu therapies, were applied to tumour pairs comprising pre- and postinvasive disease from 25 patients undergoing treatment for bladder cancer. In the preinvasive tumours, increased HER2/neu copy number was observed in 76% of cases and increased chromosome 17 copy number in 88% of cases, and in the postinvasive group these values were 92 and 96%, respectively (not significantly different P=0.09 and 0.07, respectively). HER2 gene amplification rates were 8% in both groups. Protein overexpression rates were 76 and 52%, respectively, in the pre- and postinvasive groups (P=0.06). These results suggest that HER2/neu abnormalities occur prior to and persist with the onset of muscle-invasive disease. Gene amplification is uncommon and other molecular mechanisms must account for the high rates of protein overexpression. Anti-HER2/neu therapy might be of use in the treatment of TCC

    Otitis media in young Aboriginal children from remote communities in Northern and Central Australia: a cross-sectional survey

    Get PDF
    BACKGROUND: Middle ear disease (otitis media) is common and frequently severe in Australian Aboriginal children. There have not been any recent large-scale surveys using clear definitions and a standardised middle ear assessment. The aim of the study was to determine the prevalence of middle ear disease (otitis media) in a high-risk population of young Aboriginal children from remote communities in Northern and Central Australia. METHODS: 709 Aboriginal children aged 6–30 months living in 29 communities from 4 health regions participated in the study between May and November 2001. Otitis media (OM) and perforation of the tympanic membrane (TM) were diagnosed by tympanometry, pneumatic otoscopy, and video-otoscopy. We used otoscopic criteria (bulging TM or recent perforation) to diagnose acute otitis media. RESULTS: 914 children were eligible to participate in the study and 709 were assessed (78%). Otitis media affected nearly all children (91%, 95%CI 88, 94). Overall prevalence estimates adjusted for clustering by community were: 10% (95%CI 8, 12) for unilateral otitis media with effusion (OME); 31% (95%CI 27, 34) for bilateral OME; 26% (95%CI 23, 30) for acute otitis media without perforation (AOM/woP); 7% (95%CI 4, 9) for AOM with perforation (AOM/wiP); 2% (95%CI 1, 3) for dry perforation; and 15% (95%CI 11, 19) for chronic suppurative otitis media (CSOM). The perforation prevalence ranged from 0–60% between communities and from 19–33% between regions. Perforations of the tympanic membrane affected 40% of children in their first 18 months of life. These were not always persistent. CONCLUSION: Overall, 1 in every 2 children examined had otoscopic signs consistent with suppurative ear disease and 1 in 4 children had a perforated tympanic membrane. Some of the children with intact tympanic membranes had experienced a perforation that healed before the survey. In this high-risk population, high rates of tympanic perforation were associated with high rates of bulging of the tympanic membrane

    Allopregnanolone Promotes Regeneration and Reduces β-Amyloid Burden in a Preclinical Model of Alzheimer's Disease

    Get PDF
    Previously, we demonstrated that allopregnanolone (APα) promoted proliferation of rodent and human neural progenitor cells in vitro. Further, we demonstrated that APα promoted neurogenesis in the hippocampal subgranular zone (SGZ) and reversed learning and memory deficits in the male triple transgenic mouse model of Alzheimer's (3xTgAD). In the current study, we determined the efficacy of APα to promote the survival of newly generated neural cells while simultaneously reducing Alzheimer's disease (AD) pathology in the 3xTgAD male mouse model. Comparative analyses between three different APα treatment regimens indicated that APα administered 1/week for 6 months was maximally efficacious for simultaneous promotion of neurogenesis and survival of newly generated cells and reduction of AD pathology. We further investigated the efficacy of APα to impact Aβ burden. Treatment was initiated either prior to or post intraneuronal Aβ accumulation. Results indicated that APα administered 1/week for 6 months significantly increased survival of newly generated neurons and simultaneously reduced Aβ pathology with greatest efficacy in the pre-pathology treatment group. APα significantly reduced Aβ generation in hippocampus, cortex, and amygdala, which was paralleled by decreased expression of Aβ-binding-alcohol-dehydrogenase. In addition, APα significantly reduced microglia activation as indicated by reduced expression of OX42 while increasing CNPase, an oligodendrocyte myelin marker. Mechanistic analyses indicated that pre-pathology treatment with APα increased expression of liver-X-receptor, pregnane-X-receptor, and 3-hydroxy-3-methyl-glutaryl-CoA-reductase (HMG-CoA-R), three proteins that regulate cholesterol homeostasis and clearance from brain. Together these findings provide preclinical evidence for the optimal treatment regimen of APα to achieve efficacy as a disease modifying therapeutic to promote regeneration while simultaneously decreasing the pathology associated with Alzheimer's disease

    Estrogen Receptor β-Selective Agonists Stimulate Calcium Oscillations in Human and Mouse Embryonic Stem Cell-Derived Neurons

    Get PDF
    Estrogens are used extensively to treat hot flashes in menopausal women. Some of the beneficial effects of estrogens in hormone therapy on the brain might be due to nongenomic effects in neurons such as the rapid stimulation of calcium oscillations. Most studies have examined the nongenomic effects of estrogen receptors (ER) in primary neurons or brain slices from the rodent brain. However, these cells can not be maintained continuously in culture because neurons are post-mitotic. Neurons derived from embryonic stem cells could be a potential continuous, cell-based model to study nongenomic actions of estrogens in neurons if they are responsive to estrogens after differentiation. In this study ER-subtype specific estrogens were used to examine the role of ERα and ERβ on calcium oscillations in neurons derived from human (hES) and mouse embryonic stem cells. Unlike the undifferentiated hES cells the differentiated cells expressed neuronal markers, ERβ, but not ERα. The non-selective ER agonist 17β-estradiol (E2) rapidly increased [Ca2+]i oscillations and synchronizations within a few minutes. No change in calcium oscillations was observed with the selective ERα agonist 4,4′,4″-(4-Propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT). In contrast, the selective ERβ agonists, 2,3-bis(4-Hydroxyphenyl)-propionitrile (DPN), MF101, and 2-(3-fluoro-4-hydroxyphenyl)-7-vinyl-1,3 benzoxazol-5-ol (ERB-041; WAY-202041) stimulated calcium oscillations similar to E2. The ERβ agonists also increased calcium oscillations and phosphorylated PKC, AKT and ERK1/2 in neurons derived from mouse ES cells, which was inhibited by nifedipine demonstrating that ERβ activates L-type voltage gated calcium channels to regulate neuronal activity. Our results demonstrate that ERβ signaling regulates nongenomic pathways in neurons derived from ES cells, and suggest that these cells might be useful to study the nongenomic mechanisms of estrogenic compounds

    Niemann-Pick disease type C

    Get PDF
    Niemann-Pick C disease (NP-C) is a neurovisceral atypical lysosomal lipid storage disorder with an estimated minimal incidence of 1/120 000 live births. The broad clinical spectrum ranges from a neonatal rapidly fatal disorder to an adult-onset chronic neurodegenerative disease. The neurological involvement defines the disease severity in most patients but is typically preceded by systemic signs (cholestatic jaundice in the neonatal period or isolated spleno- or hepatosplenomegaly in infancy or childhood). The first neurological symptoms vary with age of onset: delay in developmental motor milestones (early infantile period), gait problems, falls, clumsiness, cataplexy, school problems (late infantile and juvenile period), and ataxia not unfrequently following initial psychiatric disturbances (adult form). The most characteristic sign is vertical supranuclear gaze palsy. The neurological disorder consists mainly of cerebellar ataxia, dysarthria, dysphagia, and progressive dementia. Cataplexy, seizures and dystonia are other common features. NP-C is transmitted in an autosomal recessive manner and is caused by mutations of either the NPC1 (95% of families) or the NPC2 genes. The exact functions of the NPC1 and NPC2 proteins are still unclear. NP-C is currently described as a cellular cholesterol trafficking defect but in the brain, the prominently stored lipids are gangliosides. Clinical examination should include comprehensive neurological and ophthalmological evaluations. The primary laboratory diagnosis requires living skin fibroblasts to demonstrate accumulation of unesterified cholesterol in perinuclear vesicles (lysosomes) after staining with filipin. Pronounced abnormalities are observed in about 80% of the cases, mild to moderate alterations in the remainder ("variant" biochemical phenotype). Genotyping of patients is useful to confirm the diagnosis in the latter patients and essential for future prenatal diagnosis. The differential diagnosis may include other lipidoses; idiopathic neonatal hepatitis and other causes of cholestatic icterus should be considered in neonates, and conditions with cerebellar ataxia, dystonia, cataplexy and supranuclear gaze palsy in older children and adults. Symptomatic management of patients is crucial. A first product, miglustat, has been granted marketing authorization in Europe and several other countries for specific treatment of the neurological manifestations. The prognosis largely correlates with the age at onset of the neurological manifestations
    corecore