22 research outputs found

    Tool wear in dry helical milling for hole-making in AISI H13 hardened steel

    Get PDF
    Helical milling is a hole-making process which can be applied to achieve high-quality finished boreholes in hardened steels. Due to the drilling process limitations, which are intensified when applied in hardened steels, the helical milling process can be applied on hole-making tasks in moulds and dies industry, since milling have been widely applied in moulds and dies machining to replace high-cost operations like grinding and electrical discharge machining. However, to succeed in achieving high-quality boreholes in hardened parts, which presents high added value due to previous operations, tool wear in the helical milling of hardened steels should be more investigated. In the present study, dry helical milling tool life tests were conducted in AISI H13 hardened steel parts, varying the cutting velocity. The flank wear on frontal cutting edges was progressively measured through optical microscopy, and SEM/EDS was performed in frontal and peripheral worn cutting edges. The wear occurred progressively in the flank of the frontal cutting edges with adhesion and oxidation as main wear mechanisms. In the peripheral edges, coating loss, and adhesion of workpiece material in the tool clearance surface were observed, besides fracture in the tool nose flank with the highest cutting velocity. A nested ANOVA was performed to evaluate the burr height in the borehole exit. The tool life stage was statistically significant in the burr height.publishe

    Large-scale unit commitment under uncertainty: an updated literature survey

    Get PDF
    The Unit Commitment problem in energy management aims at finding the optimal production schedule of a set of generation units, while meeting various system-wide constraints. It has always been a large-scale, non-convex, difficult problem, especially in view of the fact that, due to operational requirements, it has to be solved in an unreasonably small time for its size. Recently, growing renewable energy shares have strongly increased the level of uncertainty in the system, making the (ideal) Unit Commitment model a large-scale, non-convex and uncertain (stochastic, robust, chance-constrained) program. We provide a survey of the literature on methods for the Uncertain Unit Commitment problem, in all its variants. We start with a review of the main contributions on solution methods for the deterministic versions of the problem, focussing on those based on mathematical programming techniques that are more relevant for the uncertain versions of the problem. We then present and categorize the approaches to the latter, while providing entry points to the relevant literature on optimization under uncertainty. This is an updated version of the paper "Large-scale Unit Commitment under uncertainty: a literature survey" that appeared in 4OR 13(2), 115--171 (2015); this version has over 170 more citations, most of which appeared in the last three years, proving how fast the literature on uncertain Unit Commitment evolves, and therefore the interest in this subject

    Revisão das dimensões de qualidade dos dados e métodos aplicados na avaliação dos sistemas de informação em saúde

    Get PDF
    corecore