1,351 research outputs found

    Uterus: Leiomyoma

    Get PDF
    Review on Uterus: Leiomyoma, with data on clinics, and the genes involved

    Design examples using µ-synthesis: Space shuttle lateral axis FCS during reentry

    Get PDF
    This paper studies the application of Structured Singular Values (SSV or µ) for analysis and synthesis of the Space Shuttle lateral axis flight control system (FCS) during reentry. While this is a fairly standard FCS problem in most respects, the aircraft model is highly uncertain due to the poorly known aerodynamic characteristics (e.g. aero coefficients). Comparisons are made of the conventional FCS with alternatives based on H∞ optimal control and µ-synthesis. The problem as formulated is particularly interesting and challenging because the uncertainty is large and highly structured

    GWAS Identifies 44 Independent Associated Genomic Loci for Self-Reported Adult Hearing Difficulty in UK Biobank

    Get PDF
    Age-related hearing impairment (ARHI) is the most common sensory impairment in the aging population; a third of individuals are affected by disabling hearing loss by the age of 65. It causes social isolation and depression and has recently been identified as a risk factor for dementia. The genetic risk factors and underlying pathology of ARHI are largely unknown, meaning that targets for new therapies remain elusive, yet heritability estimates range between 35% and 55%. We performed genome-wide association studies (GWASs) for two self-reported hearing phenotypes, using more than 250,000 UK Biobank (UKBB) volunteers aged between 40 and 69 years. Forty-four independent genome-wide significant loci (p < 5E−08) were identified, considerably increasing the number of established trait loci. Thirty-four loci are novel associations with hearing loss of any form, and only one of the ten known hearing loci has a previously reported association with an ARHI-related trait. Gene sets from these loci are enriched in auditory processes such as synaptic activities, nervous system processes, inner ear morphology, and cognition, while genetic correlation analysis revealed strong positive correlations with multiple personality and psychological traits for the first time. Immunohistochemistry for protein localization in adult mouse cochlea implicate metabolic, sensory, and neuronal functions for NID2, CLRN2, and ARHGEF28. These results provide insight into the genetic landscape underlying ARHI, opening up novel therapeutic targets for further investigation. In a wider context, our study also highlights the viability of using self-report phenotypes for genetic discovery in very large samples when deep phenotyping is unavailable

    Electron Spin Resonance of P Donors in Isotopically Purified Si Detected by Contactless Photoconductivity

    Get PDF
    Coherence times of electron spins bound to phosphorus donors have been measured, using a standard Hahn echo technique, to be up to 20 ms in isotopically pure silicon with [P]=1014cm-3 and at temperatures ≤4K. Although such times are exceptionally long for electron spins in the solid state, they are nevertheless limited by donor electron spin-spin interactions. Suppressing such interactions requires even lower donor concentrations, which lie below the detection limit for typical ESR spectrometers. Here we describe an alternative method for phosphorus donor ESR detection, exploiting the spin-to-charge conversion provided by the optical donor-bound-exciton transition. We characterize the method and its dependence on laser power and use it to measure a coherence time of T2=130ms for one of the purest silicon samples grown to date ([P]=5×1011cm-3). We then benchmark this result using an alternative application of the donor-bound-exciton transition: optically polarizing the donor spins before using conventional ESR detection at 1.7 K for a sample with [P]=4×1012cm-3, and measuring in this case a T2 of 350 ms. In both cases, T2 is obtained after accounting for the effects of magnetic field noise, and the use of more stable (e.g., permanent) magnets could yield even longer coherence times

    Solid state quantum memory using the 31P nuclear spin

    Full text link
    The transfer of information between different physical forms is a central theme in communication and computation, for example between processing entities and memory. Nowhere is this more crucial than in quantum computation, where great effort must be taken to protect the integrity of a fragile quantum bit. Nuclear spins are known to benefit from long coherence times compared to electron spins, but are slow to manipulate and suffer from weak thermal polarisation. A powerful model for quantum computation is thus one in which electron spins are used for processing and readout while nuclear spins are used for storage. Here we demonstrate the coherent transfer of a superposition state in an electron spin 'processing' qubit to a nuclear spin 'memory' qubit, using a combination of microwave and radiofrequency pulses applied to 31P donors in an isotopically pure 28Si crystal. The electron spin state can be stored in the nuclear spin on a timescale that is long compared with the electron decoherence time and then coherently transferred back to the electron spin, thus demonstrating the 31P nuclear spin as a solid-state quantum memory. The overall store/readout fidelity is about 90%, attributed to systematic imperfections in radiofrequency pulses which can be improved through the use of composite pulses. We apply dynamic decoupling to protect the nuclear spin quantum memory element from sources of decoherence. The coherence lifetime of the quantum memory element is found to exceed one second at 5.5K.Comment: v2: Tomography added and storage of general initial state

    Natural killer cells attenuate cytomegalovirus-induced hearing loss in mice

    Get PDF
    <div><p>Congenital cytomegalovirus (CMV) infection is the most common non-hereditary cause of sensorineural hearing loss (SNHL) yet the mechanisms of hearing loss remain obscure. Natural Killer (NK) cells play a critical role in regulating murine CMV infection via NK cell recognition of the Ly49H cell surface receptor of the viral-encoded m157 ligand expressed at the infected cell surface. This Ly49H NK receptor/m157 ligand interaction has been found to mediate host resistance to CMV in the spleen, and lung, but is much less effective in the liver, so it is not known if this interaction is important in the context of SNHL. Using a murine model for CMV-induced labyrinthitis, we have demonstrated that the Ly49H/m157 interaction mediates host resistance in the temporal bone. BALB/c mice, which lack functional Ly49H, inoculated with mCMV at post-natal day 3 developed profound hearing loss and significant outer hair cell loss by 28 days of life. In contrast, C57BL/6 mice, competent for the Ly49H/m157 interaction, had minimal hearing loss and attenuated outer hair cell loss with the same mCMV dose. Administration of Ly49H blocking antibody or inoculation with a mCMV viral strain deleted for the m157 gene rendered the previously resistant C57BL/6 mouse strain susceptible to hearing loss to a similar extent as the BALB/c mouse strain indicating a direct role of the Ly49H/m157 interaction in mCMV-dependent hearing loss. Additionally, NK cell recruitment to sites of infection was evident in the temporal bone of inoculated susceptible mouse strains. These results demonstrate participation of NK cells in protection from CMV-induced labyrinthitis and SNHL in mice.</p></div

    Neonatal Overfeeding Induced by Small Litter Rearing Causes Altered Glucocorticoid Metabolism in Rats

    Get PDF
    Elevated glucocorticoid (GC) activity may be involved in the development of the metabolic syndrome. Tissue GC exposure is determined by the tissue-specific GC-activating enzyme 11β-hydroxysteriod dehydrogenase type 1 (11β-HSD1) and the GC-inactivating enzyme 5α-reductase type 1 (5αR1), as well as 5β-reductase (5βR). Our aim was to study the effects of neonatal overfeeding induced by small litter rearing on the expression of GC-regulating enzymes in adipose tissue and/or liver and on obesity-related metabolic disturbances during development. Male Sprague-Dawley rat pup litters were adjusted to litter sizes of three (small litters, SL) or ten (normal litters, NL) on postnatal day 3 and then given standard chow from postnatal week 3 onward (W3). Small litter rearing induced obesity, hyperinsulinemia, and higher circulating corticosterone in adults. 11β-HSD1 expression and enzyme activity in retroperitoneal, but not in epididymal, adipose tissue increased with postnatal time and peaked at W5/W6 in both groups before declining. From W8, 11β-HSD1 expression and enzyme activity levels in retroperitoneal fat persisted at significantly higher levels in SL compared to NL rats. Hepatic 11β-HSD1 enzyme activity in SL rats was elevated from W3 to W16 compared to NL rats. Hepatic 5αR1 and 5βR expression was higher in SL compared to NL rats after weaning until W6, whereupon expression decreased in the SL rats and remained similar to that in NL rats. In conclusion, small litter rearing in rats induced peripheral tissue-specific alterations in 11β-HSD1 expression and activity and 5αR1 and 5βR expression during puberty, which could contribute to elevated tissue-specific GC exposure and aggravate the development of metabolic dysregulation in adults

    Simultaneous Screening of Multiple Mutations by Invader Assay Improves Molecular Diagnosis of Hereditary Hearing Loss: A Multicenter Study

    Get PDF
    Although etiological studies have shown genetic disorders to be a common cause of congenital/early-onset sensorineural hearing loss, there have been no detailed multicenter studies based on genetic testing. In the present report, 264 Japanese patients with bilateral sensorineural hearing loss from 33 ENT departments nationwide participated. For these patients, we first applied the Invader assay for screening 47 known mutations of 13 known deafness genes, followed by direct sequencing as necessary. A total of 78 (29.5%) subjects had at least one deafness gene mutation. Mutations were more frequently found in the patients with congenital or early-onset hearing loss, i.e., in those with an awareness age of 0–6 years, mutations were significantly higher (41.8%) than in patients with an older age of awareness (16.0%). Among the 13 genes, mutations in GJB2 and SLC26A4 were mainly found in congenital or early-onset patients, in contrast with mitochondrial mutations (12S rRNA m.1555A>G, tRNA(Leu(UUR)) m.3243A>G), which were predominantly found in older-onset patients. The present method of simultaneous screening of multiple deafness mutations by Invader assay followed by direct sequencing will enable us to detect deafness mutations in an efficient and practical manner for clinical use
    • …
    corecore