42 research outputs found

    Mechanisms of Hybrid Oligomer Formation in the Pathogenesis of Combined Alzheimer's and Parkinson's Diseases

    Get PDF
    Background: Misfolding and pathological aggregation of neuronal proteins has been proposed to play a critical role in the pathogenesis of neurodegenerative disorders. Alzheimer’s disease (AD) and Parkinson’s disease (PD) are frequent neurodegenerative diseases of the aging population. While progressive accumulation of amyloid b protein (Ab) oligomers has been identified as one of the central toxic events in AD, accumulation of a-synuclein (a-syn) resulting in the formation of oligomers and protofibrils has been linked to PD and Lewy body Disease (LBD). We have recently shown that Ab promotes a-syn aggregation and toxic conversion in vivo, suggesting that abnormal interactions between misfolded proteins might contribute to disease pathogenesis. However the molecular characteristics and consequences of these interactions are not completely clear. Methodology/Principal Findings: In order to understand the molecular mechanisms involved in potential Ab/a-syn interactions, immunoblot, molecular modeling, and in vitro studies with a-syn and Ab were performed. We showed in vivo in the brains of patients with AD/PD and in transgenic mice, Ab and a-synuclein co-immunoprecipitate and form complexes. Molecular modeling and simulations showed that Ab binds a-syn monomers, homodimers, and trimers, forming hybrid ringlike pentamers. Interactions occurred between the N-terminus of Ab and the N-terminus and C-terminus of a-syn. Interacting a-syn and Ab dimers that dock on the membrane incorporated additional a-syn molecules, leading to th

    Selective Molecular Alterations in the Autophagy Pathway in Patients with Lewy Body Disease and in Models of α-Synucleinopathy

    Get PDF
    Lewy body disease is a heterogeneous group of neurodegenerative disorders characterized by α-synuclein accumulation that includes dementia with Lewy bodies (DLB) and Parkinson's Disease (PD). Recent evidence suggests that impairment of lysosomal pathways (i.e. autophagy) involved in α-synuclein clearance might play an important role. For this reason, we sought to examine the expression levels of members of the autophagy pathway in brains of patients with DLB and Alzheimer's Disease (AD) and in α-synuclein transgenic mice.By immunoblot analysis, compared to controls and AD, in DLB cases levels of mTor were elevated and Atg7 were reduced. Levels of other components of the autophagy pathway such as Atg5, Atg10, Atg12 and Beclin-1 were not different in DLB compared to controls. In DLB brains, mTor was more abundant in neurons displaying α-synuclein accumulation. These neurons also showed abnormal expression of lysosomal markers such as LC3, and ultrastructural analysis revealed the presence of abundant and abnormal autophagosomes. Similar alterations were observed in the brains of α-synuclein transgenic mice. Intra-cerebral infusion of rapamycin, an inhibitor of mTor, or injection of a lentiviral vector expressing Atg7 resulted in reduced accumulation of α-synuclein in transgenic mice and amelioration of associated neurodegenerative alterations.This study supports the notion that defects in the autophagy pathway and more specifically in mTor and Atg7 are associated with neurodegeneration in DLB cases and α-synuclein transgenic models and supports the possibility that modulators of the autophagy pathway might have potential therapeutic effects

    The role of virtual reality in neuropsychology: The virtual multiple errands test for the assessment of executive functions in Parkinson's disease

    No full text
    In recent years, Virtual Reality technologies have emerged as assessment and treatment tools in neuropsychology. In this chapter, we will explore the possibility of using Virtual Reality to improve the traditional neuropsychological assessment of executive functions. First, we will discuss the advantages offered by Virtual Reality to more traditional approaches. Then, the chapter details the characteristics of the Virtual Multiple Errands Test (VMET), a virtual reality tool developed using NeuroVR (http://www.neurovr.org)-a free virtual reality platform useful for the assessment and neurorehabilitation. Specifically, the VMET is an assessment protocol of executive functions, where participants are invited to navigate a virtual supermarket, completing tasks that require certain rules. In the chapter, we will present the detailed description of its clinical rationale and its different phases. Furthermore, a systematic analysis of the results obtained in different studies using the VMET will be outlined. Finally, we will discuss the potentiality of the VMET for integrating the traditional neuropsychological evaluation of patients with Parkinson's disease. Detection of early executive deficits in Parkinson's disease could facilitate the identification of patients at risk to develop dementia, and could give the chance to develop early neurorehabilitation interventions
    corecore