703 research outputs found

    Spatial Regulation of Membrane Fusion Controlled by Modification of Phosphoinositides

    Get PDF
    Membrane fusion plays a central role in many cell processes from vesicular transport to nuclear envelope reconstitution at mitosis but the mechanisms that underlie fusion of natural membranes are not well understood. Studies with synthetic membranes and theoretical considerations indicate that accumulation of lipids characterised by negative curvature such as diacylglycerol (DAG) facilitate fusion. However, the specific role of lipids in membrane fusion of natural membranes is not well established. Nuclear envelope (NE) assembly was used as a model for membrane fusion. A natural membrane population highly enriched in the enzyme and substrate needed to produce DAG has been isolated and is required for fusions leading to nuclear envelope formation, although it contributes only a small amount of the membrane eventually incorporated into the NE. It was postulated to initiate and regulate membrane fusion. Here we use a multidisciplinary approach including subcellular membrane purification, fluorescence spectroscopy and Förster resonance energy transfer (FRET)/two-photon fluorescence lifetime imaging microscopy (FLIM) to demonstrate that initiation of vesicle fusion arises from two unique sites where these vesicles bind to chromatin. Fusion is subsequently propagated to the endoplasmic reticulum-derived membranes that make up the bulk of the NE to ultimately enclose the chromatin. We show how initiation of multiple vesicle fusions can be controlled by localised production of DAG and propagated bidirectionally. Phospholipase C (PLCγ), GTP hydrolysis and (phosphatidylinsositol-(4,5)-bisphosphate (PtdIns(4,5)P2) are required for the latter process. We discuss the general implications of membrane fusion regulation and spatial control utilising such a mechanism

    Who should be prioritized for renal transplantation?: Analysis of key stakeholder preferences using discrete choice experiments

    Get PDF
    Background Policies for allocating deceased donor kidneys have recently shifted from allocation based on Human Leucocyte Antigen (HLA) tissue matching in the UK and USA. Newer allocation algorithms incorporate waiting time as a primary factor, and in the UK, young adults are also favoured. However, there is little contemporary UK research on the views of stakeholders in the transplant process to inform future allocation policy. This research project aimed to address this issue. Methods Discrete Choice Experiment (DCE) questionnaires were used to establish priorities for kidney transplantation among different stakeholder groups in the UK. Questionnaires were targeted at patients, carers, donors / relatives of deceased donors, and healthcare professionals. Attributes considered included: waiting time; donor-recipient HLA match; whether a recipient had dependents; diseases affecting life expectancy; and diseases affecting quality of life. Results Responses were obtained from 908 patients (including 98 ethnic minorities); 41 carers; 48 donors / relatives of deceased donors; and 113 healthcare professionals. The patient group demonstrated statistically different preferences for every attribute (i.e. significantly different from zero) so implying that changes in given attributes affected preferences, except when prioritizing those with no rather than moderate diseases affecting quality of life. The attributes valued highly related to waiting time, tissue match, prioritizing those with dependents, and prioritizing those with moderate rather than severe diseases affecting life expectancy. Some preferences differed between healthcare professionals and patients, and ethnic minority and non-ethnic minority patients. Only non-ethnic minority patients and healthcare professionals clearly prioritized those with better tissue matches. Conclusions Our econometric results are broadly supportive of the 2006 shift in UK transplant policy which emphasized prioritizing the young and long waiters. However, our findings suggest the need for a further review in the light of observed differences in preferences amongst ethnic minorities, and also because those with dependents may be a further priority.</p

    Enhanced Generation of Induced Pluripotent Stem Cells from a Subpopulation of Human Fibroblasts

    Get PDF
    BACKGROUND: The derivation of induced pluripotent stem cells (iPSCs) provides new possibilities for basic research and novel cell-based therapies. Limitations, however, include our current lack of understanding regarding the underlying mechanisms and the inefficiency of reprogramming. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report identification and isolation of a subpopulation of human dermal fibroblasts that express the pluripotency marker stage specific embryonic antigen 3 (SSEA3). Fibroblasts that expressed SSEA3 demonstrated an enhanced iPSC generation efficiency, while no iPSC derivation was obtained from the fibroblasts that did not express SSEA3. Transcriptional analysis revealed NANOG expression was significantly increased in the SSEA3 expressing fibroblasts, suggesting a possible mechanistic explanation for the differential reprogramming. CONCLUSIONS/SIGNIFICANCE: To our knowledge, this study is the first to identify a pluripotency marker in a heterogeneous population of human dermal fibroblasts, to isolate a subpopulation of cells that have a significantly increased propensity to reprogram to pluripotency and to identify a possible mechanism to explain this differential reprogramming. This discovery provides a method to significantly increase the efficiency of reprogramming, enhancing the feasibility of the potential applications based on this technology, and a tool for basic research studies to understand the underlying reprogramming mechanisms

    Modelling forced vital capacity in idiopathic pulmonary fibrosis: optimising trial design.

    Get PDF
    INTRODUCTION: Forced vital capacity is the only registrational endpoint in idiopathic pulmonary fibrosis clinical trials. As most new treatments will be administered on top of standard of care, estimating treatment response will become more challenging. We developed a simulation model to quantify variability associated with forced vital capacity decline. METHODS: The model is based on publicly available clinical trial summary and home spirometry data. A single, illustrative trial setting is reported. Model assumptions are 400 subjects randomised 1:1 to investigational drug or placebo over 52 weeks, 50% of each group receiving standard of care (all-comer population), and a 90-mL treatment difference in annual forced vital capacity decline. Longitudinal profiles were simulated and the impact of varying clinical scenarios evaluated. RESULTS: Power to detect a significant treatment difference was 87-97%, depending on the analysis method. Repeated measures analysis generally outperformed analysis of covariance and mixed linear models, particularly with missing data (as simulated data were non-linear). A 15% yearly random dropout rate led to 0.6-5% power loss. Forced vital capacity decline-related dropout introduced greater power loss (up to 12%), as did subjects starting/stopping standard of care or investigational drug. Power was substantially lower for a 26-week trial due to the smaller assumed treatment effect at week 26 (sample size would need doubling to reach a power similar to that of a 52-week trial). CONCLUSIONS: Our model quantifies forced vital capacity decline and associated variability, with all the caveats of background therapy, permitting robust power calculations to inform future idiopathic pulmonary fibrosis clinical trial design. FUNDING: Galapagos NV (Mechelen, Belgium)

    Vasohibin inhibits angiogenic sprouting in vitro and supports vascular maturation processes in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The murine homologue of human vasohibin (mVASH1), a putative antiangiogenic protein, was investigated for its effects on <it>in vitro </it>and <it>in vivo </it>angiogenesis.</p> <p>Methods</p> <p>Cell growth and migration were analyzed in murine fibroblasts, smooth muscle cells and endothelial cells. Angiogenic sprouting was studied in human umbilical vein endothelial cells (HUVECs) in the spheroid sprouting assay. <it>In vivo </it>effects on blood vessel formation were investigated in the chorioallantoic membrane (CAM) assay and in the C57BL/6 melanoma xenograft model.</p> <p>Results</p> <p>Purified murine and human VASH1 protein induced apoptosis of murine fibroblasts <it>in vitro</it>, but not of vascular aortic smooth muscle cells (AoSMC) or endothelial cells. Adenoviral overexpression of murine and human VASH1 inhibited capillary sprouting of HUVECs in the spheroid assay. Administration of recombinant murine and human VASH1 inhibited growth of large vessels in the CAM assay and promoted the formation of a dense, fine vascular network. Murine VASH1-overexpressing B16F10 melanomas displayed a reduction in large vessels and vascular area. Moreover, tumors showed more microvessels that stained positive for the mural cell markers α-smooth muscle cell actin (ASMA) and proteoglycan (NG2).</p> <p>Conclusion</p> <p>Our data imply that murine VASH1 causes angiogenic remodelling by inhibiting angiogenic sprouting and large vessel growth, thereby supporting the formation of a vascular bed consisting predominantly of mature microvessels.</p

    Observational and genetic associations between cardiorespiratory fitness and cancer: a UK Biobank and international consortia study

    Get PDF
    BACKGROUND: The association of fitness with cancer risk is not clear. METHODS: We used Cox proportional hazards models to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for risk of lung, colorectal, endometrial, breast, and prostate cancer in a subset of UK Biobank participants who completed a submaximal fitness test in 2009-12 (N = 72,572). We also investigated relationships using two-sample Mendelian randomisation (MR), odds ratios (ORs) were estimated using the inverse-variance weighted method. RESULTS: After a median of 11 years of follow-up, 4290 cancers of interest were diagnosed. A 3.5 ml O2⋅min-1⋅kg-1 total-body mass increase in fitness (equivalent to 1 metabolic equivalent of task (MET), approximately 0.5 standard deviation (SD)) was associated with lower risks of endometrial (HR = 0.81, 95% CI: 0.73-0.89), colorectal (0.94, 0.90-0.99), and breast cancer (0.96, 0.92-0.99). In MR analyses, a 0.5 SD increase in genetically predicted O2⋅min-1⋅kg-1 fat-free mass was associated with a lower risk of breast cancer (OR = 0.92, 95% CI: 0.86-0.98). After adjusting for adiposity, both the observational and genetic associations were attenuated. DISCUSSION: Higher fitness levels may reduce risks of endometrial, colorectal, and breast cancer, though relationships with adiposity are complex and may mediate these relationships. Increasing fitness, including via changes in body composition, may be an effective strategy for cancer prevention

    Common genetic variation in IGF1, IGFBP-1, and IGFBP-3 in relation to mammographic density: a cross-sectional study

    Get PDF
    INTRODUCTION: Mammographic density is one of the strongest risk factors for breast cancer and is believed to represent epithelial and stromal proliferation. Because of the high heritability of breast density, and the role of the insulin-like growth factor (IGF) pathway in cellular proliferation and breast development, we examined the association between common genetic variation in this pathway and mammographic density. METHODS: We conducted a cross-sectional analysis among controls (n = 1,121) who were between the ages of 42 and 78 years at mammography, from a breast cancer case-control study nested within the Nurses' Health Study cohort. At the time of mammography, 204 women were premenopausal and 917 were postmenopausal. We genotyped 29 haplotype-tagging SNPs demonstrated to capture common genetic variation in IGF1, IGF binding protein (IGFBP)-1, and IGFBP-3. RESULTS: Common haplotype patterns in three of the four haplotype blocks spanning the gene encoding IGF1 were associated with mammographic density. Haplotype patterns in block 1 (p = 0.03), block 3 (p = 0.009), and block 4 (p = 0.007) were associated with mammographic density, whereas those in block 2 were not. None of the common haplotypes in the three haplotype blocks spanning the genes encoding IGFBP-1/IGFBP-3 were significantly associated with mammographic density. Two haplotype-tagging SNPs in IGF1, rs1520220 and rs2946834, showed a strong association with mammographic density. Those with the homozygous variant genotype for rs1520220 had a mean percentage mammographic density of 19.6% compared with those with the homozygous wild-type genotype, who had a mean percentage mammographic density of 27.9% (p for trend < 0.0001). Those that were homozygous variant for rs2946834 had a mean percentage mammographic density of 23.2% compared with those who were homozygous wild-type with a mean percentage mammographic density of 28.2% (p for trend = 0.0004). Permutation testing demonstrated that results as strong as these are unlikely to occur by chance (p = 0.0005). CONCLUSION: Common genetic variation in IGF1 is strongly associated with percentage mammographic density

    Investigating the Associations among Overtime Work, Health Behaviors, and Health: A Longitudinal Study among Full-time Employees

    Get PDF
    # The Author(s) 2010. This article is published with open access at Springerlink.com Background It has often been suggested that high levels of overtime lead to adverse health outcomes. One mechanism that may account for this association is that working overtime leads to elevated levels of stress, which could affect worker’s behavioral decisions or habits (such as smoking and lack of physical activity). In turn, this could lead to adverse health. Purpose The present study examined this reasoning in a prospective longitudinal design. Data from the prospective 2-year Study on Health at Work (N=649) were used to test our hypotheses. Methods Structural equation analysis was used to examine the relationships among overtime, beneficial (exercising, intake of fruit and vegetables) and risky (smoking and drinking) health behaviors, and health indicators (BMI and subjective health). Results Working overtime was longitudinally related with adverse subjective health, but not with body mass
    • …
    corecore