100 research outputs found

    More On The Connection Between Planar Field Theory And String Theory

    Get PDF
    We continue work on the connection between world sheet representation of the planar phi^3 theory and string formation. The present article, like the earlier work, is based on the existence of a solitonic solution on the world sheet, and on the zero mode fluctuations around this solution. The main advance made in this paper is the removal of the cutoff and the transition to the continuum limit on the world sheet. The result is an action for the modes whose energies remain finite in this limit (light modes). The expansion of this action about a dense background of graphs on the world sheet leads to the formation of a string.Comment: 27 pages, 3 figure

    Field Theory On The World Sheet: Improvements And Generalizations

    Full text link
    This article is the continuation of a project of investigating planar phi^3 model in various dimensions. The idea is to reformulate them on the world sheet, and then to apply the classical (meanfield) approximation, with two goals: To show that the ground state of the model is a solitonic configuration on the world sheet, and the quantum fluctuations around the soliton lead to the formation of a transverse string. After a review of some of the earlier work, we introduce and discuss several generalizations and new results. In 1+2 dimensions, a rigorous upper bound on the solitonic energy is established. A phi^4 interaction is added to stabilize the original phi^3 model. In 1+3 and 1+5 dimensions, an improved treatment of the ultraviolet divergences is given. And significantly, we show that our approximation scheme can be imbedded into a systematic strong coupling expansion. Finally, the spectrum of quantum fluctuations around the soliton confirms earlier results: In 1+2 and 1+3 dimensions, a transverse string is formed on the world sheet.Comment: 29 pages, 5 figures, several typos and eqs.(74) and (75) are corrected, a comment added to section

    Covariant And Local Field Theory On The World Sheet

    Full text link
    In earlier work, using the light cone picture, a world sheet field theory that sums planar phi^3 graphs was constructed and developed. Since this theory is both non-local and not explicitly Lorentz invariant, it is desirable to have a covariant and local alternative. In this paper, we construct such a covariant and local world sheet theory, and show that it is equivalent to the original non-covariant version.Comment: 22 pages,3 figures, typos and eqs.(11) and (63) are correcte

    Status and Prospects of Top-Quark Physics

    Full text link
    The top quark is the heaviest elementary particle observed to date. Its large mass of about 173 GeV/c^2 makes the top quark act differently than other elementary fermions, as it decays before it hadronises, passing its spin information on to its decay products. In addition, the top quark plays an important role in higher-order loop corrections to standard model processes, which makes the top quark mass a crucial parameter for precision tests of the electroweak theory. The top quark is also a powerful probe for new phenomena beyond the standard model. During the time of discovery at the Tevatron in 1995 only a few properties of the top quark could be measured. In recent years, since the start of Tevatron Run II, the field of top-quark physics has changed and entered a precision era. This report summarises the latest measurements and studies of top-quark properties and gives prospects for future measurements at the Large Hadron Collider (LHC).Comment: 76 pages, 35 figures, submitted to Progress in Particle and Nuclear Physic

    Constrained BV Description of String Field Theory

    Full text link
    In the conventional BV description of string field theory, the string field Phi is split as Phi = Psi+Psi* where Psi includes all states with ghost number less than or equal to G and describes the spacetime fields, and Psi* includes all states with ghost number >G and describes the spacetime antifields. A new approach is proposed here in which separate string fields Psi and Psi* of unrestricted ghost number describe the spacetime fields and antifields. The string antifield Psi* is constrained to satisfy Psi* = {\partial L}/{\partial(Q Psi)} where L is the BV Lagrangian and Q is the worldsheet BRST operator. Dirac antibrackets are defined using this constraint, and the resulting description is equivalent to the conventional BV description for open and closed bosonic string field theory. For open superstring field theory, this constrained BV description is much simpler than the conventional BV description and allows the BV action to be expressed in the same WZW-like form as the classical action.Comment: 21 pages harvmac te

    Open superstring field theory I: gauge fixing, ghost structure, and propagator

    Get PDF
    The WZW form of open superstring field theory has linearized gauge invariances associated with the BRST operator Q and the zero mode η [subscript 0] of the picture minus-one fermionic superconformal ghost. We discuss gauge fixing of the free theory in a simple class of gauges using the Faddeev-Popov method. We find that the world-sheet ghost number of ghost and antighost string fields ranges over all integers, except one, and at any fixed ghost number, only a finite number of picture numbers appear. We calculate the propagators in a variety of gauges and determine the field-antifield content and the free master action in the Batalin-Vilkovisky formalism. Unlike the case of bosonic string field theory, the resulting master action is not simply related to the original gauge-invariant action by relaxing the constraint on the ghost and picture numbers.United States. Dept. of Energy (Cooperative rRsearch Agreement DE-FG02-05ER41360.

    Thermal properties of a string bit model at large N

    Full text link
    We study the finite temperature properties of a recently introduced string bit model designed to capture some features of the emergent string in the tensionless limit. The model consists of a pair of bosonic and fermionic bit operators transforming in the adjoint representation of the color group SU(N). Color confinement is not achieved as a dynamical effect, but instead is enforced by an explicit singlet projection. At large N and finite temperature, the model has a non trivial thermodynamics. In particular, there is a Hagedorn type transition at a finite temperature T=THT=T_H where the string degrees of freedom are liberated and the free energy gets a large contribution N2\sim N^{2} that plays the role of an order parameter. For T>THT>T_H, the low temperature phase becomes unstable. In the new phase, the thermodynamically favoured configurations are characterized by a non-trivial gapped density of the SU(N) angles associated with the singlet projection. We present an accurate algorithm for the determination of the density profile at N=N=\infty. In particular, we determine the gap endpoint at generic temperature and analytical expansions valid near the Hagedorn transition as well as at high temperature. The leading order corrections are characterized by non-trivial exponents that are determined analytically and compared with explicit numerical calculations.Comment: 15 pages, 8 pdf figure

    First order parent formulation for generic gauge field theories

    Full text link
    We show how a generic gauge field theory described by a BRST differential can systematically be reformulated as a first order parent system whose spacetime part is determined by the de Rham differential. In the spirit of Vasiliev's unfolded approach, this is done by extending the original space of fields so as to include their derivatives as new independent fields together with associated form fields. Through the inclusion of the antifield dependent part of the BRST differential, the parent formulation can be used both for on and off-shell formulations. For diffeomorphism invariant models, the parent formulation can be reformulated as an AKSZ-type sigma model. Several examples, such as the relativistic particle, parametrized theories, Yang-Mills theory, general relativity and the two dimensional sigma model are worked out in details.Comment: 36 pages, additional sections and minor correction

    Validity of Gauge-Fixing Conditions and the Structure of Propagators in Open Superstring Field Theory

    Full text link
    We make a detailed analysis on validity of gauge-fixing conditions and the structure of propagators in the Wess-Zumino-Witten-type open superstring field theory. First, we generalize the gauge-fixing conditions considered in JHEP 03 (2012) 030 [arXiv:1201.1761] by the present author et al., and propose a large class of conditions characterized by zero modes of world-sheet oscillators. Then we demonstrate its validity: we prove that gauge degrees of freedom allow us to impose the conditions, and that the conditions fix the gauges completely. Moreover, we elucidate how the information about the gauge choices is reflected in the structure of propagators. The results can be readily extended to the case in which gauge-fixing conditions involve linear combinations of the world-sheet oscillators, including nonzero modes. We investigate also such extended gauges, which are the counterpart of linear bb-gauges in bosonic string field theory, and obtain the corresponding propagators.Comment: LaTeX2e, 79 pages, 2 figures; v2: 80 pages, typos corrected, minor changes; v3: Footnotes 15 and 16, and a few sentences have been added in order to clarify the argument. typos corrected, published in JHEP; v4: typos in equation (6.76) correcte
    corecore