3 research outputs found
Yielding and irreversible deformation below the microscale: Surface effects and non-mean-field plastic avalanches
Nanoindentation techniques recently developed to measure the mechanical
response of crystals under external loading conditions reveal new phenomena
upon decreasing sample size below the microscale. At small length scales,
material resistance to irreversible deformation depends on sample morphology.
Here we study the mechanisms of yield and plastic flow in inherently small
crystals under uniaxial compression. Discrete structural rearrangements emerge
as series of abrupt discontinuities in stress-strain curves. We obtain the
theoretical dependence of the yield stress on system size and geometry and
elucidate the statistical properties of plastic deformation at such scales. Our
results show that the absence of dislocation storage leads to crucial effects
on the statistics of plastic events, ultimately affecting the universal scaling
behavior observed at larger scales.Comment: Supporting Videos available at
http://dx.plos.org/10.1371/journal.pone.002041