53 research outputs found

    Vitamin D Status and Bone and Connective Tissue Turnover in Brown Bears (Ursus arctos) during Hibernation and the Active State

    Get PDF
    BACKGROUND: Extended physical inactivity causes disuse osteoporosis in humans. In contrast, brown bears (Ursus arctos) are highly immobilised for half of the year during hibernation without signs of bone loss and therefore may serve as a model for prevention of osteoporosis. AIM: To study 25-hydroxy-vitamin D (25OHD) levels and bone turnover markers in brown bears during the hibernating state in winter and during the active state in summer. We measured vitamin D subtypes (D₂ and D₃), calcitropic hormones (parathyroid hormone [PTH], 1,25-dihydroxy-vitamin D [1,25(OH)₂D]) and bone turnover parameters (osteocalcin, ICTP, CTX-I), PTH, serum calcium and PIIINP. MATERIAL AND METHODS: We drew blood from seven immobilised wild brown bears during hibernation in February and in the same bears while active in June. RESULTS: Serum 25-hydroxy-cholecalciferol (25OHD₃) was significantly higher in the summer than in the winter (22.8±4.6 vs. 8.8±2.1 nmol/l, two tailed p-2p = 0.02), whereas 25-hydroxy-ergocalciferol (25OHD₂) was higher in winter (54.2±8.3 vs. 18.7±1.7 nmol/l, 2p<0.01). Total serum calcium and PTH levels did not differ between winter and summer. Activated 1,25(OH)₂D demonstrated a statistically insignificant trend towards higher summer levels. Osteocalcin levels were higher in summer than winter, whereas other markers of bone turnover (ICTP and CTX-I) were unchanged. Serum PIIINP, which is a marker of connective tissue and to some degree muscle turnover, was significantly higher during summer than during winter. CONCLUSIONS: Dramatic changes were documented in the vitamin D₃/D₂ ratio and in markers of bone and connective tissue turnover in brown bears between hibernation and the active state. Because hibernating brown bears do not develop disuse osteoporosis, despite extensive physical inactivity we suggest that they may serve as a model for the prevention of this disease

    Correlation of Circulating Omentin-1 with Bone Mineral Density in Multiple Sclerosis: The Crosstalk between Bone and Adipose Tissue

    Get PDF
    BACKGROUND: Patients with multiple sclerosis (MS) are at increased risk of osteoporosis and fractures. Adipose tissue-derived adipokines may play important roles in the osteoimmunology of MS. In order to determine whether omentin-1 and vaspin may be related to bone health in MS patients, we compared circulating levels of these recently identified adipokines, between MS patients and healthy controls. METHODS: A total of 35 ambulatory MS patients with relapsing-remitting courses were compared with 38 age- and sex-matched healthy controls. Bone mineral density (BMD) was determined for the lumbar spine (L2-L4) and the proximal femur using dual-energy x-ray absorptiometry. Circulating omentin-1, vaspin, osteocalcin, osteopontin, osteoprotegerin, the receptor activator of nuclear factor-κB ligand, matrix metalloproteinase 9, C-reactive protein and 25-hydroxy vitamin D levels were evaluated by highly specific enzyme-linked immunosorbent assay methods. RESULTS: There was no significant difference between the two groups regarding bone-related cytokines, adipocytokines, and the BMD measurements of patients with MS and the healthy controls. However, in multiple regression analysis, serum omentin-1 levels were positively correlated with BMD at the femoral neck (β = 0.49, p = 0.016), total hip (β = 0.42, p = 0.035), osteopontin (β = 0.42, p = 0.030) and osteocalcin (β = 0.53, p = 0.004) in MS patients. No correlations were found between vaspin, biochemical, and BMD measures in both groups. CONCLUSIONS: Elevated omentin-1 serum levels are correlated with BMD at the femoral neck and the serum levels of osteocalcin and osteopontin in MS patients. Therefore, there is crosstalk between adipose tissue and bone in MS
    • …
    corecore