22 research outputs found

    Magnetic effects in a holographic Fermi-like liquid

    Full text link
    We explore the magnetic properties of the Fermi-like liquid represented by the D3-D7' system. The system exhibits interesting magnetic properties such as ferromagnetism and an anomalous Hall effect, which are due to the Chern-Simons term in the effective gravitational action. We investigate the spectrum of quasi-normal modes in the presence of a magnetic field and show that the magnetic field mitigates the instability towards a striped phase. In addition, we find a critical magnetic field above which the zero sound mode becomes massive.Comment: 18 pages, 15 figure

    Competing orders in M-theory: superfluids, stripes and metamagnetism

    Get PDF
    We analyse the infinite class of d = 3 CFTs dual to skew-whiffed AdS 4 × SE 7 solutions of D = 11 supergravity at finite temperature and charge density and in the presence of a magnetic field. We construct black hole solutions corresponding to the unbroken phase, and at zero temperature some of these become dyonic domain walls of an Einstein-Maxwell-pseudo-scalar theory interpolating between AdS 4 in the UV and new families of dyonic AdS 2 ×R 2 solutions in the IR. The black holes exhibit both diamagnetic and paramagnetic behaviour. We analyse superfluid and striped instabilities and show that for large enough values of the magnetic field the superfluid instability disappears while the striped instability remains. For larger values of the magnetic field there is also a first-order metamagnetic phase transition and at zero temperature these black hole solutions exhibit hyperscaling violation in the IR with dynamical exponent z = 3/2 and θ = −2
    corecore