1,789 research outputs found

    Elastic moduli approximation of higher symmetry for the acoustical properties of an anisotropic material

    Full text link
    The issue of how to define and determine an optimal acoustical fit to a set of anisotropic elastic constants is addressed. The optimal moduli are defined as those which minimize the mean squared difference in the acoustical tensors between the given moduli and all possible moduli of a chosen higher material symmetry. The solution is shown to be identical to minimizing a Euclidean distance function, or equivalently, projecting the tensor of elastic stiffness onto the appropriate symmetry. This has implications for how to best select anisotropic constants to acoustically model complex materials.Comment: 20 page

    Fluxos, Encontros e Dispersões: Agenciamento Entre Arte e Clínica

    Get PDF
    Buscamos cartografar os fluxos artísticos que povoaram um CAPS para cuidados referentes ao uso de álcool e outras drogas de um município do Espírito Santo entre os anos de 2006 e 2016 e, com eles, delinear uma paisagem coletiva, relacionando-os com alguns momentos da arte e da clínica a partir do século XIX até os dias de hoje. Esta relação, por sua vez, visa apontar, ainda que de maneira circunscrita, a política de saúde mental que se fez tangenciando a arte ao longo dos anos, colocando em evidência as forças manicomiais que se fazem ainda presentes, assim como as resistências que são criadas para enfrentá-las. Evidencia alguns momentos de ampliação da clínica e seus agenciamentos com as artes moderna e contemporânea, com a construção e regulamentação das oficinas artísticas nos serviços de saúde mental, procurando tornar visíveis fluxos emergentes que apontam, por sua vez, para uma necessidade de desinstitucionalização da arte, assim como a territorialização de outros caminhos. Palavras chave: Arte - saúde mental. Álcool e outras drogas - CAPS

    Genome-wide analysis of LTR retrotransposon diversity and its impact on the evolution of the genus Helianthus (L.)

    Get PDF
    Background: Genome divergence by mobile elements activity and recombination is a continuous process that plays a key role in the evolution of species. Nevertheless, knowledge on retrotransposon-related variability among species belonging to the same genus is still limited. Considering the importance of the genus Helianthus, a model system for studying the ecological genetics of speciation and adaptation, we performed a comparative analysis of the repetitive genome fraction across ten species and one subspecies of sunflower, focusing on long terminal repeat retrotransposons at superfamily, lineage and sublineage levels. Results: After determining the relative genome size of each species, genomic DNA was isolated and subjected to Illumina sequencing. Then, different assembling and clustering approaches allowed exploring the repetitive component of all genomes. On average, repetitive DNA in Helianthus species represented more than 75% of the genome, being composed mostly by long terminal repeat retrotransposons. Also, the prevalence of Gypsy over Copia superfamily was observed and, among lineages, Chromovirus was by far the most represented. Although nearly all the same sublineages are present in all species, we found considerable variability in the abundance of diverse retrotransposon lineages and sublineages, especially between annual and perennial species. Conclusions: This large variability should indicate that different events of amplification or loss related to these elements occurred following species separation and should have been involved in species differentiation. Our data allowed us inferring on the extent of interspecific repetitive DNA variation related to LTR-RE abundance, investigating the relationship between changes of LTR-RE abundance and the evolution of the genus, and determining the degree of coevolution of different LTR-RE lineages or sublineages between and within species. Moreover, the data suggested that LTR-RE abundance in a species was affected by the annual or perennial habit of that species

    Radiative transfer effects on Doppler measurements as sources of surface effects in sunspot seismology

    Get PDF
    We show that the use of Doppler shifts of Zeeman sensitive spectral lines to observe wavesn in sunspots is subject to measurement specific phase shifts arising from, (i) altered height range of spectral line formation and the propagating character of p mode waves in penumbrae, and (ii) Zeeman broadening and splitting. We also show that these phase shifts depend on wave frequencies, strengths and line of sight inclination of magnetic field, and the polarization state used for Doppler measurements. We discuss how these phase shifts could contribute to local helioseismic measurements of 'surface effects' in sunspot seismology.Comment: 12 pages, 4 figures, Accepted for publication in the Astrophysical Journal Letter

    Nonlinear response of single-molecule nanomagnets: equilibrium and dynamical

    Full text link
    We present an experimental study of the {\em nonlinear} susceptibility of Mn12_{12} single-molecule magnets. We investigate both their thermal-equilibrium and dynamical nonlinear responses. The equilibrium results show the sensitivity of the nonlinear susceptibility to the magnetic anisotropy, which is nearly absent in the linear response for axes distributed at random. The nonlinear dynamic response of Mn12_{12} was recently found to be very large and displaying peaks reversed with respect to classical superparamagnets [F. Luis {\em et al.}, Phys. Rev. Lett. {\bf 92}, 107201 (2004)]. Here we corroborate the proposed explanation -- strong field dependence of the relaxation rate due to the detuning of tunnel energy levels. This is done by studying the orientational dependence of the nonlinear susceptibility, which permits to isolate the quantum detuning contribution. Besides, from the analysis of the longitudinal and transverse contributions we estimate a bound for the decoherence time due to the coupling to the phonon bath.Comment: 13 pages, 8 figures, resubmitted to Phys. Rev. B with minor change

    Eating Disorders

    Get PDF
    Anorexia and bulimia are diseases known since ancient times, but in recent years their frequency has been continuously increasing in most industrialized countries. The etiology of these disorders can be traced back to the interaction between genetic predisposition, childhood experiences, and cultural pressures. As regards the course, a certain tendency to chronicity can be observed, and in extreme cases, they can cause death. According to the diagnostic classification of the DSM-5, eating disorders include anorexia nervosa, bulimia nervosa, binge eating disorder (which, compared to DSM-IV, becomes a diagnostic category in its own right), and other specified feeding and eating disorders (OSFED). Both anorexia and bulimia cause potentially serious medical complications. To maximize the chances of good outcomes a multidisciplinary intervention is necessary with staff including professionally heterogeneous figures: a psychiatrist, a psychologist, and a nutritionist. Therapeutic success for these patients is limited. Eating disorders require, among psychiatric disorders, the greatest possible collaboration between different professional figures with different specializations

    Investigation of corrosion-erosion phenomena in the primary cooling system of SPIDER

    Get PDF
    SPIDER dedicated cooling plant has to remove up to 10 MW thermal power from in-vessel components and auxiliary systems. The circuit is characterized by three main heat transfer systems: primary, secondary and tertiary systems. The primary system is made of four circuits, with only three operating so far, these are called PC01, PC02 and PC03. These three circuits respectively cool SPIDER power supplies and the beam source components using ultrapure water. During 2019 SPIDER experimental campaigns, it was observed that electrical resistivity of water degraded considerably and more quickly (∼25 MΩ cm h−1 in PC01) than estimated by design. To overcome this issue, water had to be restored very frequently to maintain the desired characteristics and avoid possible detrimental leakage currents throughout the circuit. The reason for this severe water degradation has to be better understood before issues such as abrupt failures may arise. This work presents a preliminary analysis of the two main circuits (PC01 and PC02) where an estimation of water degradation induced by general corrosion of stainless steels and copper components was made. This preliminary estimation showed that PC01 could be more prone to general corrosion than PC02; however, the rate of water conductivity increase was 5.3 times smaller than that observed during experiments in 2019 and 2020

    Three-minute wave enhancement in the solar photosphere

    Get PDF
    It is a well-known result that the power of five-minute oscillations is progressively reduced by magnetic fields in the solar photosphere. Many authors have pointed out that this fact could be due to a complex interaction of many processes: opacity effects, MHD mode conversion and intrinsic reduced acoustic emissivity in strong magnetic fields. While five-minute oscillations are the dominant component in the photosphere, it has been shown that chromospheric heights are in turn dominated by three-minute oscillations. Two main theories have been proposed to explain their presence based upon resonance filtering in the atmospheric cavity and non linear interactions. In this work we show, through the analysis of IBIS observations of a solar pore in the photospheric Fe I 617.3 nm line, that three-minute waves are already present at the height of formation of this line and that their amplitude depends on the magnetic field strength and is strictly confined in the umbral region.Comment: A&A accepte

    Seeing-Induced Errors in Solar Doppler Velocity Measurements

    Full text link
    Imaging systems based on a narrow-band tunable filter are used to obtain Doppler velocity maps of solar features. These velocity maps are created by taking the difference between the blue- and red-wing intensity images of a chosen spectral line. This method has the inherent assumption that these two images are obtained under identical conditions. With the dynamical nature of the solar features as well as the Earth's atmosphere, systematic errors can be introduced in such measurements. In this paper, a quantitative estimate of the errors introduced due to variable seeing conditions for ground-based observations is simulated and compared with real observational data for identifying their reliability. It is shown, under such conditions, that there is a strong cross-talk from the total intensity to the velocity estimates. These spurious velocities are larger in magnitude for the umbral regions compared to the penumbra or quiet-sun regions surrounding the sunspots. The variable seeing can induce spurious velocities up to about 1 km/s It is also shown that adaptive optics, in general, helps in minimising this effect.Comment: 14 page
    corecore