71 research outputs found

    Reviewing the Integrated Design Approach for Augmenting Strength and Toughness at Macro- and Micro-Scale in High-Performance Advanced Composites

    Get PDF
    In response to the growing demand for high-strength and high-toughness materials in industries such as aerospace and automotive, there is a need for metal matrix composites (MMCs) that can simultaneously increase strength and toughness. The mechanical properties of MMCs depend not only on the content of reinforcing elements, but also on the architecture of the composite (shape, size, and spatial distribution). This paper focuses on the design configurations of MMCs, which include both the configurations resulting from the reinforcements and the inherent heterogeneity of the matrix itself. Such high-performance MMCs exhibit excellent mechanical properties, such as high strength, plasticity, and fracture toughness. These properties, which are not present in conventional homogeneous materials, are mainly due to the synergistic effects resulting from the interactions between the internal components, including stress-strain gradients, geometrically necessary dislocations, and unique interfacial behavior. Among them, aluminum matrix composites (AMCs) are of particular importance due to their potential for weight reduction and performance enhancement in aerospace, electronics, and electric vehicles. However, the challenge lies in the inverse relationship between strength and toughness, which hinders the widespread use and large-scale development of MMCs. Composite material design plays a critical role in simultaneously improving strength and toughness. This review examines the advantages of toughness, toughness mechanisms, toughness distribution properties, and structural parameters in the development of composite structures. The development of synthetic composites with homogeneous structural designs inspired by biological composites such as bone offers insights into achieving exceptional strength and toughness in lightweight structures. In addition, understanding fracture behavior and toughness mechanisms in heterogeneous nanostructures is critical to advancing the field of metal matrix composites. The future development direction of architectural composites and the design of the reinforcement and toughness of metal matrix composites based on energy dissipation theory are also proposed. In conclusion, the design of composite architectures holds enormous potential for the development of composites with excellent strength and toughness to meet the requirements of lightweight structures in various industries

    Effect of welding parameters on mechanical and microstructural properties of AA6082 jointsproduced by friction stir welding

    Get PDF
    The effect of processing parameters on mechanical and microstructural properties of AA6082 joints produced by friction stir welding was analysed in the present study. Different welded specimens were produced by employing a fixed rotating speeds of 1600rpm and by varying welding speeds from 40 to 460 mm/min. The joints mechanical properties were evaluated by means of tensile tests at room temperature. In addition, fatigue tests were performed by using a resonant electro-mechanical testing machine under constant amplitude control up to 250 Hz sinusoidal loading. The fatigue tests were conducted in axial control mode with R = min/max = 0.1, for all the welding and rotating speeds used in the present study. The microstructural evolution of the material was analysed according to the welding parameters by optical observations of the jointed cross-sections and SEM observations of the fractured surfaces were done to characterize the weld performances

    Water Electrolysis for the Production of Hydrogen to Be Employed in the Ironmaking and Steelmaking Industry

    Get PDF
    The way to decarbonization will be characterized by the huge production of hydrogen through sustainable routes. Thus, the basic production way is water electrolysis sustained by renewable energy sources allowing for obtaining "green hydrogen". The present paper reviews the main available technologies for the water electrolysis finalized to the hydrogen production. We describe the fundamental of water electrolysis and the problems related to purification and/or desalinization of water before electrolysis. As a matter of fact, we describe the energy efficiency issues with particular attention to the potential application in the steel industry. The fundamental aspects related to the choice of high-temperature or low-temperature technologies are analyzed. Keywords: water electrolysis; ironmaking; steelmaking;

    Mechanical and microstructural behaviour of 2024–7075 aluminium alloy sheets joined by friction stir welding

    Get PDF
    The aim of the present work is to investigate on the mechanical and microstructural properties of dissimilar 2024 and 7075 aluminium sheets joined by friction stir welding (FSW). The two sheets, aligned with perpendicular rolling directions, have been successfully welded; successively, the welded sheets have been tested under tension at room temperature in order to analyse the mechanical response with respect to the parent materials. The fatigue endurance (S–N) curves of the welded joints have been achieved, since the fatigue behaviour of light welded sheets is the best performance indicator for a large part of industrial applications; a resonant electro-mechanical testing machine load and a constant load ratio RZsmin/smaxZ0.1 have been used at a load frequency of about 75 Hz. The resulted microstructure due to the FSW process has been studied by employing optical and scanning electron microscopy either on ‘as welded’ specimens and on tested specimen after rupture occurred

    Thermoelasticity and CCD analysis of crack propagation in AA6082 friction stir w elded joints

    Get PDF
    The advantages of friction stir welding (FSW) process compared to conventional fusion welding technologies have been clearly demonstrated in recent years. In the present study, AA6082 FSW joints were produced by employing different welding parameters. The principal aim of this work is to apply thermoelastic stress analysis (TSA) to study crack propagation characteristics of friction stir welded aluminum sheets, during cyclic fatigue tests. The crack propagation experiments were performed by employing single edge notched specimens; fatigue tests were performed under tension with load ratio R = 0.1. All the mechanical tests were conducted up to failure. The TSA measurement system allowed crack evolution to be observed in real-time during fatigue cycles and stress fields to be derived on the specimens from the measured temperature variation. The thermoelastic data were used to analyse principal stresses and principal strains on the specimens surface and the crack growth rate during tests. In addition, it was possible to evaluate all the joints defects effects, as a function of welding parameters, correlating effects on different crack growth rate and instabilities. The achieved results were compared with those obtained by classical CCD camera monitoring of crack front propagation during cyclic loading and all the results were validated by employing finite element analysis performed with ABAQUS software

    Effect of welding parameters on mechanical and microstructural properties of dissimilar AA6082–AA2024 joints produced by friction stir welding

    Get PDF
    The effect of processing parameters on the mechanical and microstructural properties of dissimilar AA6082-AA2024 joints produced by friction stir welding was analysed in this study. Different samples were produced by varying the advancing speeds of the tool as 80 and 115 mm/min and by varying the alloy positioned on the advancing side of the tool. In all the experiments the rotating speed is fixed at 1600 RPM. All the welds were produced perpendicularly to the rolling direction for both the alloys. Microhardness (HV) and tensile tests performed at room temperature were used to evaluate the mechanical properties of the joints. The mechanical tests were performed on the joints previously subjected to annealing at 250 °C for 1 h. For the fatigue tests, a resonant electromechanical testing machine was employed under constant loading control up to 250 Hz sine wave loading. The fatigue tests were conducted in the axial total stress-amplitude control mode, with R = σmin/σmax = 0.1. In order to analyse the microstructural evolution of the material, the welds' cross-sections were observed optically and SEM observations were made of the fracture surfaces
    • …
    corecore