35 research outputs found

    From grape to wine: Fate of ochratoxin A during red, rose, and white winemaking process and the presence of ochratoxin derivatives in the final products.

    Get PDF
    The presence of ochratoxin A (OTA) in wine is mainly due to the contamination of grapes by Aspergillus carbonarius and A. niger, still in the vineyard or at stages prior to winemaking. Throughout winemaking process, although there is a reduction in OTA levels, modified mycotoxins may also be formed. In fact, modified mycotoxins are compounds that normally remain undetectable during the conventional analysis used for the parent toxin. In this context, the current study aimed to evaluate the effect of grape variety and winemaking steps on OTA fate as well as the formation of modified ochratoxins. White, rose and red wines were prepared from Muscat Italia, Syrah and Touriga Nacional varieties, respectively. OTA was determined during different steps of winemaking by UHPLC-ESI-MS/MS. Identification of ochratoxin derivatives was performed using tandem MS experiments. A reduction of 90.72, 92.44 and 88.15% in OTA levels was observed for white, rose and red wines, respectively. Among the sought targets, the following ochratoxin-derived candidates were identified: ochratoxin β, ochratoxin α methyl ester, ochratoxin B methyl ester, ochratoxin A methyl ester, ethylamide ochratoxin A, ochratoxin C and ochratoxin A glucose ester. These results indicate that the formation of ochratoxin derivatives leads to an underestimation of total mycotoxin levels in wine and, therefore, the inclusion of techniques for multi-mycotoxins detection should be considered

    Olives and olive oil are sources of electrophilic fatty acid nitroalkenes

    Get PDF
    Extra virgin olive oil (EVOO) and olives, key sources of unsaturated fatty acids in the Mediterranean diet, provide health benefits to humans. Nitric oxide (•NO) and nitrite (NO2-)-dependent reactions of unsaturated fatty acids yield electrophilic nitroalkene derivatives (NO 2-FA) that manifest salutary pleiotropic cell signaling responses in mammals. Herein, the endogenous presence of NO2-FA in both EVOO and fresh olives was demonstrated by mass spectrometry. The electrophilic nature of these species was affirmed by the detection of significant levels of protein cysteine adducts of nitro-oleic acid (NO2-OA-cysteine) in fresh olives, especially in the peel. Further nitration of EVOO by NO2- under acidic gastric digestive conditions revealed that human consumption of olive lipids will produce additional nitro-conjugated linoleic acid (NO2-cLA) and nitro-oleic acid (NO2-OA). The presence of free and protein-adducted NO2-FA in both mammalian and plant lipids further affirm a role for these species as signaling mediators. Since NO2-FA instigate adaptive anti-inflammatory gene expression and metabolic responses, these redox-derived metabolites may contribute to the cardiovascular benefits associated with the Mediterranean diet. © 2014 Fazzari et al

    Incipient Balancing Selection through Adaptive Loss of Aquaporins in Natural Saccharomyces cerevisiae Populations

    Get PDF
    A major goal in evolutionary biology is to understand how adaptive evolution has influenced natural variation, but identifying loci subject to positive selection has been a challenge. Here we present the adaptive loss of a pair of paralogous genes in specific Saccharomyces cerevisiae subpopulations. We mapped natural variation in freeze-thaw tolerance to two water transporters, AQY1 and AQY2, previously implicated in freeze-thaw survival. However, whereas freeze-thaw–tolerant strains harbor functional aquaporin genes, the set of sensitive strains lost aquaporin function at least 6 independent times. Several genomic signatures at AQY1 and/or AQY2 reveal low variation surrounding these loci within strains of the same haplotype, but high variation between strain groups. This is consistent with recent adaptive loss of aquaporins in subgroups of strains, leading to incipient balancing selection. We show that, although aquaporins are critical for surviving freeze-thaw stress, loss of both genes provides a major fitness advantage on high-sugar substrates common to many strains' natural niche. Strikingly, strains with non-functional alleles have also lost the ancestral requirement for aquaporins during spore formation. Thus, the antagonistic effect of aquaporin function—providing an advantage in freeze-thaw tolerance but a fitness defect for growth in high-sugar environments—contributes to the maintenance of both functional and nonfunctional alleles in S. cerevisiae. This work also shows that gene loss through multiple missense and nonsense mutations, hallmarks of pseudogenization presumed to emerge after loss of constraint, can arise through positive selection

    Unraveling infectious structures, strain variants and species barriers for the yeast prion [PSI+]

    Get PDF
    Prions are proteins that can access multiple conformations, at least one of which is beta-sheet rich, infectious and self-perpetuating in nature. These infectious proteins show several remarkable biological activities, including the ability to form multiple infectious prion conformations, also known as strains or variants, encoding unique biological phenotypes, and to establish and overcome prion species (transmission) barriers. In this Perspective, we highlight recent studies of the yeast prion [PSI+], using various biochemical and structural methods, that have begun to illuminate the molecular mechanisms by which self-perpetuating prions encipher such biological activities. We also discuss several aspects of prion conformational change and structure that remain either unknown or controversial, and we propose approaches to accelerate the understanding of these enigmatic, infectious conformers
    corecore