29,370 research outputs found

    Pressure and isotope effect on the anisotropy of MgB2_{2}

    Full text link
    We analyze the data for the pressure and boron isotope effect on the temperature dependence of the magnetization near TcT_{c}. Invoking the universal scaling relation for the magnetization at fixed magnetic field it is shown that the relative shift of TcT_{c}, induced by pressure or boron isotope exchange, mirrors essentially that of the anisotropy. This uncovers a novel generic property of anisotropic type II superconductors, inexistent in the isotropic case. For MgB2_{2} it implies that the renormalization of the Fermi surface topology due to pressure or isotope exchange is dominated by a mechanism controlling the anisotropy.Comment: 7 pages, 3 figure

    Bound states of bosons and fermions in a mixed vector-scalar coupling with unequal shapes for the potentials

    Full text link
    The Klein-Gordon and the Dirac equations with vector and scalar potentials are investigated under a more general condition, Vv+Vs=constantV_{v}+V_{s}= \mathrm{constant}. These intrinsically relativistic and isospectral problems are solved in a case of squared hyperbolic potential functions and bound states for either particles or antiparticles are found. The eigenvalues and eigenfuntions are discussed in some detail and the effective Compton wavelength is revealed to be an important physical quantity. It is revealed that a boson is better localized than a fermion when they have the same mass and are subjected to the same potentials.Comment: 3 figure

    Hemisphere Mixing: a Fully Data-Driven Model of QCD Multijet Backgrounds for LHC Searches

    Get PDF
    A novel method is proposed here to precisely model the multi-dimensional features of QCD multi-jet events in hadron collisions. The method relies on the schematization of high-pT QCD processes as 2->2 reactions made complex by sub-leading effects. The construction of libraries of hemispheres from experimental data and the definition of a suitable nearest-neighbor-based association map allow for the generation of artificial events that reproduce with surprising accuracy the kinematics of the QCD component of original data, while remaining insensitive to small signal contaminations. The method is succinctly described and its performance is tested in the case of the search for the hh->bbbb process at the LHC.Comment: 4 pages plus header, 1 figure, proceedings of EPS 2017 Venic

    Breakdown of smoothness for the Muskat problem

    Get PDF
    In this paper we show that there exist analytic initial data in the stable regime for the Muskat problem such that the solution turns to the unstable regime and later breaks down i.e. no longer belongs to C4C^4.Comment: 93 pages, 10 figures (6 added

    An alternative approach for the dynamics of polarons in one dimension

    Full text link
    We developed a new method based on functional integration to treat the dynamics of polarons in one-dimensional systems. We treat the acoustical and the optical case in an unified manner, showing their differences and similarities. The mobility and diffusion coefficients are calculated in the Markovian approximation in the strong coupling limit.Comment: 57 page

    Effects due to a scalar coupling on the particle-antiparticle production in the Duffin-Kemmer-Petiau theory

    Full text link
    The Duffin-Kemmer-Petiau formalism with vector and scalar potentials is used to point out a few misconceptions diffused in the literature. It is explicitly shown that the scalar coupling makes the DKP formalism not equivalent to the Klein-Gordon formalism or to the Proca formalism, and that the spin-1 sector of the DKP theory looks formally like the spin-0 sector. With proper boundary conditions, scattering of massive bosons in an arbitrary mixed vector-scalar square step potential is explored in a simple way and effects due to the scalar coupling on the particle-antiparticle production and localization of bosons are analyzed in some detail
    corecore