32,314 research outputs found
A Laplace transform approach to the quantum harmonic oscillator
The one-dimensional quantum harmonic oscillator problem is examined via the
Laplace transform method. The stationary states are determined by requiring
definite parity and good behaviour of the eigenfunction at the origin and at
infinity
Modeling non-thermal emission from stellar bow shocks
Runaway O- and early B-type stars passing throughout the interstellar medium
at supersonic velocities and characterized by strong stellar winds may produce
bow shocks that can serve as particle acceleration sites. Previous theoretical
models predict the production of high energy photons by non-thermal radiative
processes, but their efficiency is still debated. We aim to test and explain
the possibility of emission from the bow shocks formed by runaway stars
traveling through the interstellar medium by using previous theoretical models.
We apply our model to AE Aurigae, the first reported star with an X-ray
detected bow shock, to BD+43 3654, in which the observations failed in
detecting high energy emission, and to the transition phase of a supergiant
star in the late stages of its life.From our analysis, we confirm that the
X-ray emission from the bow shock produced by AE Aurigae can be explained by
inverse Compton processes involving the infrared photons of the heated dust. We
also predict low high energy flux emission from the bow shock produced by BD+43
3654, and the possibility of high energy emission from the bow shock formed by
a supergiant star during the transition phase from blue to red supergiant.Bow
shock formed by different type of runaway stars are revealed as a new possible
source of high energy photons in our neighbourhood
Spin and pseudospin symmetries in the antinucleon spectrum of nuclei
Spin and pseudospin symmetries in the spectra of nucleons and antinucleons
are studied in a relativistic mean-field theory with scalar and vector
Woods-Saxon potentials, in which the strength of the latter is allowed to
change. We observe that, for nucleons and antinucleons, the spin symmetry is of
perturbative nature and it is almost an exact symmetry in the physical region
for antinucleons. The opposite situation is found in the pseudospin symmetry
case, which is better realized for nucleons than for antinucleons, but is of
dynamical nature and cannot be viewed in a perturbative way both for nucleons
and antinucleons. This is shown by computing the spin-orbit and
pseudospin-orbit couplings for selected spin and pseudospin partners in both
spectra.Comment: 8 figures, uses revtex 4.1 macro
Tensor coupling and pseudospin symmetry in nuclei
In this work we study the contribution of the isoscalar tensor coupling to
the realization of pseudospin symmetry in nuclei. Using realistic values for
the tensor coupling strength, we show that this coupling reduces noticeably the
pseudospin splittings, especially for single-particle levels near the Fermi
surface. By using an energy decomposition of the pseudospin energy splittings,
we show that the changes in these splittings come by mainly through the changes
induced in the lower radial wave function for the low-lying pseudospin
partners, and by changes in the expectation value of the pseudospin-orbit
coupling term for surface partners. This allows us to confirm the conclusion
already reached in previous studies, namely that the pseudospin symmetry in
nuclei is of a dynamical nature.Comment: 11 pages, 5 figures, uses REVTeX macro
The influence of statistical properties of Fourier coefficients on random surfaces
Many examples of natural systems can be described by random Gaussian
surfaces. Much can be learned by analyzing the Fourier expansion of the
surfaces, from which it is possible to determine the corresponding Hurst
exponent and consequently establish the presence of scale invariance. We show
that this symmetry is not affected by the distribution of the modulus of the
Fourier coefficients. Furthermore, we investigate the role of the Fourier
phases of random surfaces. In particular, we show how the surface is affected
by a non-uniform distribution of phases
Topologically Protected Zero Modes in Twisted Bilayer Graphene
We show that the twisted graphene bilayer can reveal unusual topological
properties at low energies, as a consequence of a Dirac-point splitting. These
features rely on a symmetry analysis of the electron hopping between the two
layers of graphene and we derive a simplified effective low-energy Hamiltonian
which captures the essential topological properties of twisted bilayer
graphene. The corresponding Landau levels peculiarly reveal a degenerate
zero-energy mode which cannot be lifted by strong magnetic fields.Comment: 5 pages, 3 figures; published versio
Determinação de aflatoxinas em milho por cromatografia líquida de alta eficiência com detecção por fluorescência - CLAE/DF.
bitstream/item/84132/1/2009-CTE-0158.pd
Herborização de orgãos vegetais em condições refrigeradas.
bitstream/item/30308/1/boletim-39.pd
- …