8,633 research outputs found

    Corporate Initiatives: A Second Human Rights Revolution?

    Get PDF
    This Essay examines the role of multinational corporations in protecting human rights around the globe. Part I analyzes the conduct of corporations, describes examples of corporations\u27 involvement in human rights violations, and discusses the merits of greater responsibility of corporations. Part II suggests that the level of responsibility for a multinational corporation depends on the proximity of the corporation\u27s operations to human rights violations, in combination with the seriousness of the violations, and proposes five gradations of responsibility. This Essay concludes that the evolving nature of the global economy is producing a shift in responsibilities from government to the private sector, particularly multinational corporations, and that those responsibilities may include the power and duty to safeguard human rights

    Lessons from the Americas: Guidelines for International Response to Amnesties for Atrocities

    Get PDF
    The impunity enjoyed by perpetrators of human rights violations, thanks in part to amnesty laws, is summarized. The international community should adopt guidelines to assist their own officials in responding to future amnesties

    The fine-tuning cost of the likelihood in SUSY models

    Full text link
    In SUSY models, the fine tuning of the electroweak (EW) scale with respect to their parameters gamma_i={m_0, m_{1/2}, mu_0, A_0, B_0,...} and the maximal likelihood L to fit the experimental data are usually regarded as two different problems. We show that, if one regards the EW minimum conditions as constraints that fix the EW scale, this commonly held view is not correct and that the likelihood contains all the information about fine-tuning. In this case we show that the corrected likelihood is equal to the ratio L/Delta of the usual likelihood L and the traditional fine tuning measure Delta of the EW scale. A similar result is obtained for the integrated likelihood over the set {gamma_i}, that can be written as a surface integral of the ratio L/Delta, with the surface in gamma_i space determined by the EW minimum constraints. As a result, a large likelihood actually demands a large ratio L/Delta or equivalently, a small chi^2_{new}=chi^2_{old}+2*ln(Delta). This shows the fine-tuning cost to the likelihood (chi^2_{new}) of the EW scale stability enforced by SUSY, that is ignored in data fits. A good chi^2_{new}/d.o.f.\approx 1 thus demands SUSY models have a fine tuning amount Delta<<exp(d.o.f./2), which provides a model-independent criterion for acceptable fine-tuning. If this criterion is not met, one can thus rule out SUSY models without a further chi^2/d.o.f. analysis. Numerical methods to fit the data can easily be adapted to account for this effect.Comment: 10 pages (v3: small comment added

    A review of naturalness and dark matter prediction for the Higgs mass in MSSM and beyond

    Full text link
    Within a two-loop leading-log approximation, we review the prediction for the lightest Higgs mass (m_h) in the framework of constrained MSSM (CMSSM), derived from the naturalness requirement of minimal fine-tuning (Delta) of the electroweak scale and dark matter consistency. As a result, the Higgs mass is predicted to be just above the LEP2 bound, m_h=115.9\pm 2 GeV, corresponding to a minimal Delta=17.8, value obtained from consistency with electroweak and WMAP (3\sigma) constraints, but without the LEP2 bound. Due to quantum corrections (largely QCD ones for m_h above LEP2 bound), Delta grows \approx exponentially on either side of the above value of m_h, which stresses the relevance of this prediction. A value m_h>121 (126) GeV cannot be accommodated within the CMSSM unless one accepts a fine-tuning cost worse than Delta>100 (1000), respectively. We review how the above prediction for m_h and Delta changes under the addition of new physics beyond the MSSM Higgs sector, parametrized by effective operators of dimensions d=5 and d=6. For d=5 operators, one can obtain values m_h\leq 130 GeV for Delta<10. The size of the supersymmetric correction that each individual operator of d=6 brings to the value of m_h for points with Delta<100, is found to be small, of few (<4) GeV for M=8 TeV, where M is the scale of new physics. This value decreases (increases) by approximately 1 GeV for a 1 TeV increase (decrease) of the scale M. The relation of these results to the Atlas/CMS supersymmetry exclusion limits is presented together with their impact for the CMSSM regions of lowest fine-tuning.Comment: 27 pages, 19 figures; (new figures and references added; improved presentation

    The onset of instability in unsteady boundary-layer separation

    Get PDF
    The process of unsteady two-dimensional boundary-layer separation at high Reynolds number is considered. Solutions of the unsteady non-interactive boundary-layer equations are known to develop a generic separation singularity in regions where the pressure gradient is prescribed and adverse. As the boundary layer starts to separate from the surface, however, the external pressure distribution is altered through viscous-inviscid interaction just prior to the formation of the separation singularity; hitherto this has been referred to as the first interactive stage. A numerical solution of this stage is obtained here in Lagrangian coordinates. The solution is shown to exhibit a high-frequency inviscid instability resulting in an immediate finite-time breakdown of this stage. The presence of the instability is confirmed through a linear stability analysis. The implications for the theoretical description of unsteady boundary-layer separation are discussed, and it is suggested that the onset of interaction may occur much sooner than previously thought
    • …
    corecore