53 research outputs found

    An Atypical Autoinflammatory Disease Due to an LRR Domain NLRP3 Mutation Enhancing Binding to NEK7

    Get PDF
    The NLRP3 inflammasome is a vital mediator of innate immune responses. There are numerous NLRP3 mutations that cause NLRP3-associated autoinflammatory diseases (NLRP3-AIDs), mostly in or around the NACHT domain. Here, we present a patient with a rare leucine-rich repeat (LRR) domain mutation, p.Arg920Gln (p.R920Q), associated with an atypical NLRP3-AID with recurrent episodes of sore throat and extensive oropharyngeal ulceration. Unlike previously reported patients, who responded well to anakinra, her oral ulcers did not significantly improve until the PDE4 inhibitor, apremilast, was added to her treatment regimen. Here, we show that this mutation enhances interactions between NLRP3 and its endogenous inhibitor, NIMA-related kinase 7 (NEK7), by affecting charge complementarity between the two proteins. We also demonstrate that additional inflammatory mediators, including the NF-кB and IL-17 signalling pathways and IL-8 chemokine, are upregulated in the patient’s macrophages and may be directly involved in disease pathogenesis. These results highlight the role of the NLRP3 LRR domain in NLRP3-AIDs and demonstrate that the p.R920Q mutation can cause diverse phenotypes between families

    Heterologous Expression and Patch-Clamp Recording of P2X Receptors in HEK293 Cells

    Get PDF
    P2X receptors (P2XRs) are ligand-gated ion channels gated by extracellular adenosine 5′-triphosphate (ATP) and play a critical role in mediating ATP-induced purinergic signaling in physiological and pathological processes. Heterologous expression of P2XR in human embryonic kidney 293 (HEK293) cells and measurement of P2XR-mediated currents using patch-clamp recording technique have been widely used to study the biophysical and pharmacological properties of these receptors. Combination of electrophysiology with site-directed mutagenesis and structural information has shed light on the molecular basis for receptor activation and mechanisms of actions by receptor antagonists and modulators. It is anticipated that such methodologies will continue helping us to provide more mechanistic understanding of P2XRs and to test novel receptor antagonists and allosteric modulators for therapeutical purposes. In this chapter, we describe protocols of transiently or stably expressing the P2XR in HEK293 cells and measuring P2XR-mediated currents by using whole-cell recording

    Glycogen Synthase Kinase 3 (GSK3) Inhibitor, SB-216763, Promotes Pluripotency in Mouse Embryonic Stem Cells

    Get PDF
    Canonical Wnt/β-catenin signaling has been suggested to promote self-renewal of pluripotent mouse and human embryonic stem cells. Here, we show that SB-216763, a glycogen synthase kinase-3 (GSK3) inhibitor, can maintain mouse embryonic stem cells (mESCs) in a pluripotent state in the absence of exogenous leukemia inhibitory factor (LIF) when cultured on mouse embryonic fibroblasts (MEFs). MESCs maintained with SB-216763 for one month were morphologically indistinguishable from LIF-treated mESCs and expressed pluripotent-specific genes Oct4, Sox2, and Nanog. Furthermore, Nanog immunostaining was more homogenous in SB-216763-treated colonies compared to LIF. Embryoid bodies (EBs) prepared from these mESCs expressed early-stage markers for all three germ layers, and could efficiently differentiate into cardiac-like cells and MAP2-immunoreactive neurons. To our knowledge, SB-216763 is the first GSK3 inhibitor that can promote self-renewal of mESC co-cultured with MEFs for more than two months

    Research on information systems failures and successes: Status update and future directions

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10796-014-9500-yInformation systems success and failure are among the most prominent streams in IS research. Explanations of why some IS fulfill their expectations, whereas others fail, are complex and multi-factorial. Despite the efforts to understand the underlying factors, the IS failure rate remains stubbornly high. A Panel session was held at the IFIP Working Group 8.6 conference in Bangalore in 2013 which forms the subject of this Special Issue. Its aim was to reflect on the need for new perspectives and research directions, to provide insights and further guidance for managers on factors enabling IS success and avoiding IS failure. Several key issues emerged, such as the need to study problems from multiple perspectives, to move beyond narrow considerations of the IT artifact, and to venture into underexplored organizational contexts, such as the public sector. © 2014 Springer Science+Business Media New York

    Control of urea hydrolysis and nitrification in soil by chemicals - Prospects and problems

    Get PDF
    A review is made of the recent work to assess the prospects of regulating urea hydrolysis and nitrification processes in soils by employing chemicals that can retard urea hydrolysis and nitrification. The possible benefits from control of nitrogen transformations in terms of conserving and enhancing fertilizer nitrogen efficiency for crop production and the problems associated with their use with regard to N metabolism of plants have also been discussed with examples. Prospects of using cheap and effective indigenous materials and chemicals for control of urea hydrolysis and nitrification under specific soil situations appear eminent in improving the fertilizer nitrogen efficiency. Urease inhibitors may be helpful in reducing problems associated with ammonia volatilization if this is not offset by leaching of urea. On the other hand retardation of nitrification appears useful in reducing losses that accompany nitrification due to leaching and denitrification, and with the plants that metabolize equally well with relatively higher amounts of NH4–N may be more effective in improving the utilization of fertilizer N under these situation
    corecore