14,523 research outputs found
Maximally correlated multipartite quantum states
We investigate quantum states that posses both maximum entanglement and
maximum discord between the pertinent parties. Since entanglement (discord) is
defined only for bipartite (two qubit) systems, we shall introduce an
appropriate sum over of all bi-partitions as the associated measure. The
ensuing definition --not new for entanglement-- is thus extended here to
quantum discord. Also, additional dimensions within the parties are considered
({\it qudits}). We also discuss nonlocality (in the form of maximum violation
of a Bell inequality) for all multiqubit systems. The emergence of more
nonlocal states than local ones, all of them possessing maximum entanglement,
will be linked, surprisingly enough, to whether quantum mechanics is defined
over the fields of real or complex numbers.Comment: 13 pages, 5 figures, 2 table
The Fine-Tuning Problem of the Electroweak Symmetry Breaking Mechanism in Minimal SUSY Models
We calculate the region of the MSSM parameter space (i.e. , ,
, \ldots) compatible with a correct electroweak breaking and a realistic
top-quark mass. To do so we have included {\em all} the one-loop corrections to
the effective potential and checked their importance in order to obtain
consistent results. We also consider the fine-tuning problem due to the
enormous dependence of on (the top Yukawa coupling), which is
substantially reduced when the one-loop effects are taken into account. We also
explore the reliability of the so-called "standard" criterion to estimate the
degree of fine-tuning. As a consequence, we obtain a new set of upper bounds on
the MSSM parameters or, equivalently, on the supersymmetric masses perfectly
consistent with the present experimental bounds.Comment: talk given at the XVI Kazimierz Meeting on Elementary Particle
Physics, Kazimierz (Poland) 24-28 May 1993, 4 pages in standard LATEX + 2
figures (not included but available upon request), CERN-TH.7024/9
Large mixing angles for neutrinos from infrared fixed points
Radiative amplification of neutrino mixing angles may explain the large
values required by solar and atmospheric neutrino oscillations. Implementation
of such mechanism in the Standard Model and many of its extensions (including
the Minimal Supersymmetric Standard Model) to amplify the solar angle, the
atmospheric or both requires (at least two) quasi-degenerate neutrino masses,
but is not always possible. When it is, it involves a fine-tuning between
initial conditions and radiative corrections. In supersymmetric models with
neutrino masses generated through the Kahler potential, neutrino mixing angles
can easily be driven to large values at low energy as they approach infrared
pseudo-fixed points at large mixing (in stark contrast with conventional
scenarios, that have infrared pseudo-fixed points at zero mixing). In addition,
quasi-degeneracy of neutrino masses is not always required.Comment: 36 pages, 7 ps figure
Implications for New Physics from Fine-Tuning Arguments: II. Little Higgs Models
We examine the fine-tuning associated to electroweak breaking in Little Higgs
scenarios and find it to be always substantial and, generically, much higher
than suggested by the rough estimates usually made. This is due to implicit
tunings between parameters that can be overlooked at first glance but show up
in a more systematic analysis. Focusing on four popular and representative
Little Higgs scenarios, we find that the fine-tuning is essentially comparable
to that of the Little Hierarchy problem of the Standard Model (which these
scenarios attempt to solve) and higher than in supersymmetric models. This does
not demonstrate that all Little Higgs models are fine-tuned, but stresses the
need of a careful analysis of this issue in model-building before claiming that
a particular model is not fine-tuned. In this respect we identify the main
sources of potential fine-tuning that should be watched out for, in order to
construct a successful Little Higgs model, which seems to be a non-trivial
goal.Comment: 39 pages, 26 ps figures, JHEP forma
- …
