322 research outputs found
Spin coupling around a carbon atom vacancy in graphene
We investigate the details of the electronic structure in the neighborhoods
of a carbon atom vacancy in graphene by employing magnetization-constrained
density-functional theory on periodic slabs, and spin-exact, multi-reference,
second-order perturbation theory on a finite cluster. The picture that emerges
is that of two local magnetic moments (one \pi-like and one \sigma-like)
decoupled from the \pi- band and coupled to each other. We find that the ground
state is a triplet with a planar equilibrium geometry where an apical C atom
opposes a pentagonal ring. This state lies ~0.2 eV lower in energy than the
open-shell singlet with one spin flipped, which is a bistable system with two
equivalent equilibrium lattice configurations (for the apical C atom above or
below the lattice plane) and a barrier ~0.1 eV high separating them.
Accordingly, a bare carbon-atom vacancy is predicted to be a spin-one
paramagnetic species, but spin-half paramagnetism can be accommodated if
binding to foreign species, ripples, coupling to a substrate, or doping are
taken into account
Metric characterization of cluster dynamics on the Sierpinski gasket
We develop and implement an algorithm for the quantitative characterization
of cluster dynamics occurring on cellular automata defined on an arbitrary
structure. As a prototype for such systems we focus on the Ising model on a
finite Sierpsinski Gasket, which is known to possess a complex thermodynamic
behavior. Our algorithm requires the projection of evolving configurations into
an appropriate partition space, where an information-based metrics (Rohlin
distance) can be naturally defined and worked out in order to detect the
changing and the stable components of clusters. The analysis highlights the
existence of different temperature regimes according to the size and the rate
of change of clusters. Such regimes are, in turn, related to the correlation
length and the emerging "critical" fluctuations, in agreement with previous
thermodynamic analysis, hence providing a non-trivial geometric description of
the peculiar critical-like behavior exhibited by the system. Moreover, at high
temperatures, we highlight the existence of different time scales controlling
the evolution towards chaos.Comment: 20 pages, 8 figure
A hungry need for knowledge on the black soldier fly digestive system
The interest towards the black soldier fly (BSF), Hermetia illucens, has grown impressively in the last few years, fostered by the legislative changes in the European landscape that have lifted the ban regarding the use of BSF larvae as feedstuff. In addition, bioconversion mediated by the larvae of the BSF is viewed as one of the most promising technologies for organic waste processing and valorisation. Finally, new, alternative applications to exploit various larval products such as lipids, chitin, antimicrobial peptides, and frass are being explored. However, this positive trend, confirmed by the increasing number of companies that deal with BSF mass rearing and processing, is in sharp contrast with the limited information on the biology of this insect, in particular on aspects related to its digestive features. This lack of knowledge needs to be carefully considered and filled in coming years, as a deep characterisation of the morphology, physiology, transcriptomics, and proteomics of the digestive system of the insect, as well a fine dissection of related aspects as gut microbiota and pathogens, is a prerequisite to improve the amazing bioconversion capabilities of this dipteron. So far, the larval stages received the most attention in research, but there might still be a lot to win by focusing more on the adult stage. Further expanding the basic knowledge on both the larval and the adult gut could lead to unexpected findings and open new perspectives to produce value-added bioproducts
Metric Features of a Dipolar Model
The lattice spin model, with nearest neighbor ferromagnetic exchange and long
range dipolar interaction, is studied by the method of time series for
observables based on cluster configurations and associated partitions, such as
Shannon entropy, Hamming and Rohlin distances. Previous results based on the
two peaks shape of the specific heat, suggested the existence of two possible
transitions. By the analysis of the Shannon entropy we are able to prove that
the first one is a true phase transition corresponding to a particular melting
process of oriented domains, where colored noise is present almost
independently of true fractality. The second one is not a real transition and
it may be ascribed to a smooth balancing between two geometrical effects: a
progressive fragmentation of the big clusters (possibly creating fractals), and
the slow onset of a small clusters chaotic phase. Comparison with the nearest
neighbor Ising ferromagnetic system points out a substantial difference in the
cluster geometrical properties of the two models and in their critical
behavior.Comment: 20 pages, 15 figures, submitted to JPhys
Microscopic energy flows in disordered Ising spin systems
An efficient microcanonical dynamics has been recently introduced for Ising
spin models embedded in a generic connected graph even in the presence of
disorder i.e. with the spin couplings chosen from a random distribution. Such a
dynamics allows a coherent definition of local temperatures also when open
boundaries are coupled to thermostats, imposing an energy flow. Within this
framework, here we introduce a consistent definition for local energy currents
and we study their dependence on the disorder. In the linear response regime,
when the global gradient between thermostats is small, we also define local
conductivities following a Fourier dicretized picture. Then, we work out a
linearized "mean-field approximation", where local conductivities are supposed
to depend on local couplings and temperatures only. We compare the approximated
currents with the exact results of the nonlinear system, showing the
reliability range of the mean-field approach, which proves very good at high
temperatures and not so efficient in the critical region. In the numerical
studies we focus on the disordered cylinder but our results could be extended
to an arbitrary, disordered spin model on a generic discrete structures.Comment: 12 pages, 6 figure
The larval midgut of Hermetia illucens is characterized by a highly complex structural organization
The demand for food of animal origin is expected to increase by 70-80% within 2050, with a consequent rise in feed requirement. Another serious concern is represented by food waste disposal: in fact, it is estimated that 1.3 billion tons/year of food are globally wasted. The dipteran Hermetia illucens, also known as black soldier fly (BSF), is a promising insect species to tackle these critical challenges because of the ability of the larvae to grow on different organic substrates and their efficiency in the bioconversion process. Moreover, the high nutritional value of the larvae and pupae makes them an alternative protein source for the production of fish feed. A deep understanding of the biology of the larval midgut, which is implicated in food digestion and nutrient absorption, is essential to better comprehend the extraordinary dietary plasticity of the larva. In the present study, we performed a morphological characterization of the midgut of last instar larvae. Our results demonstrate that the larval midgut is composed of three distinct anatomical regions with different luminal pH. These regions are characterized by different cell types that accomplish digestion and absorption activities (columnar cells), acidification of the midgut lumen (cuprophilic cells), regulation processes (endocrine cells), and growth of the epithelium (stem cells). Moreover, we are investigating the expression of different enzymes along BSF midgut epithelium, which are involved in transport mechanisms. This work was supported by Fondazione Cariplo (Insect bioconversion: from vegetable waste to protein production for fish feed, ID 2014-0550)
Molecular and functional characterization of Hermetia illucens larval midgut
The increase in global demand for meat and the management of organic waste are huge global issues. In addition to policies to contain the excessive meat consumption and the production of food waste, a possible perspective is to consider insects as agents for organic waste reduction and as source of protein for monogastric feed production. The larvae of Hermetia illucens (Diptera: Stratiomyidae) are good candidates for bioconversion of vegetal waste and feed production because they grow on different organic substrates and the dry-matter of the prepupa contains a very high percentage of protein with high nutritional value. The study of H. illucens midgut physiology is essential to understand the extraordinary feeding plasticity of this insect and to best exploit this ability. We characterized the digestive enzymes involved in the initial phase of digestion in the three regions of the midgut (anterior, middle and posterior). The proteolytic activity was assayed using chromogenic substrates and specific inhibitors. The total proteolytic activity is highest in the posterior midgut and the major activity is due to serine proteases. We measured the activity and the transcript levels of the two main serine proteases involved in insect digestion: trypsin-like and chymotrypsin-like proteases. Moreover, we determined the total amylolytic activity and the highest value was recorded in the anterior midgut. Thanks to our data, we propose the first model of the functional activity of H. illucens midgut. This work was supported by Fondazione Cariplo (Insect bioconversion: from vegetable waste to protein production for fish feed, ID 2014-0550)
Polypeptides from Hermetia illucens: a bio source for innovative materials in the framework of a circular economy model
Plastic waste reduction is one of the main challenges of the 21st century from an environmental and sustainability perspective. Still nowadays, relatively little plastic waste is collected for recycling (less than 10%) and a large fraction (approximately 20%) of Municipal Solid Waste (MSW) goes to landfill. At the global level, the generation of municipal solid waste (MSW) is estimated to be 2.5 billion tonnes per year, of which 30-55% is represented by the so-called organic fraction of municipal solid waste (OFMSW). While the use of alternative, plastic-like materials from natural sources could be one of the most appealing solutions, the massive occupation of agricultural soils for their supply is a big concern. In this scenario, waste valorization is gaining major relevance within the framework of circular economy models, with bio-conversion mediated from insects being one possible and effective answer. The project RICH (Turning Rubbish Into biobased materials: a sustainable CHain for the full valorization of organic waste) aims to develop an innovative and integrated circular economy chain, which, starting from the biotransformation of the organic fraction of municipal solid waste (OFMSW), allows the targeted production of biobased materials with high technological value, such as bioplastics and other advanced protein-based materials. In the present study, proteins and polypeptides were extracted from larvae of Hermetia illucens, also known as black soldier fly. Extracts were characterized by means of proteomics techniques such as BCA, SDSPAGE, and LC-MS analyses. Procedures were next defined to prepare materials such as films, tuning the mechanical properties, and investigating the correlation with the molecular structure. Elastic films were obtained and the elasticity was correlated with the chemical composition and the protocol for film preparation. The results so far obtained pave the way for the application of these materials in the biomedical and packaging fields, bringing us closer to the completion of a new circular economy model
Interacting Random Walkers and Non-Equilibrium Fluctuations
We introduce a model of interacting Random Walk, whose hopping amplitude
depends on the number of walkers/particles on the link. The mesoscopic
counterpart of such a microscopic dynamics is a diffusing system whose
diffusivity depends on the particle density. A non-equilibrium stationary flux
can be induced by suitable boundary conditions, and we show indeed that it is
mesoscopically described by a Fourier equation with a density dependent
diffusivity. A simple mean-field description predicts a critical diffusivity if
the hopping amplitude vanishes for a certain walker density. Actually, we
evidence that, even if the density equals this pseudo-critical value, the
system does not present any criticality but only a dynamical slowing down. This
property is confirmed by the fact that, in spite of interaction, the particle
distribution at equilibrium is simply described in terms of a product of
Poissonians. For mesoscopic systems with a stationary flux, a very effect of
interaction among particles consists in the amplification of fluctuations,
which is especially relevant close to the pseudo-critical density. This agrees
with analogous results obtained for Ising models, clarifying that larger
fluctuations are induced by the dynamical slowing down and not by a genuine
criticality. The consistency of this amplification effect with altered coloured
noise in time series is also proved.Comment: 8 pages, 7 figure
- …