16 research outputs found

    Study Of Statistical Methods In The Spatial Variability Measurement Of Climatic Variables Within Broiler Houses

    No full text
    Natural ventilation is important for bird welfare in Brazilian poultry housing, increasing the heat loss by convective ways. The objective of this research was to analyze the feasibility of geostatistical methodology in estimating the spatial pattern of climatic variables within broiler houses. Dry-bulb temperature (DBT, °C), relative humidity (RU, %), light intensity (L, lux), and air velocity (V, m/s) were collected in the middle of 72 cells in two similar broiler houses located at Tuiuti city, state of São Paulo, Brazil. A portable thermoanemometer (Extech® Model 45160) was used to collect the temperature, relative humidity, and air velocity data. To measure the light intensity, a luximeter (Hagner®) was used. The temperature, humidity and air velocity index, THIV, was calculated with the climatic data. The software MatLab® was used to perform the statistical analysis. The software SURFER® 1995 was used to build the maps of climatic variables. The results showed that the statistical technique allows finding some areas within the houses with different spatial variability on all studied climatic variables. The values show an asymmetrical distribution for the variables of light intensity, air velocity, and THIV. The statistical analysis showed a spatial dependence of the climatic variables on both broiler houses. Therefore, it can be concluded that the homogeneity was observed for the climatic variables from the relative humidity and wind velocity in the broiler house with the use of tunnel ventilation. The light intensity was more homogeneous in the tunnel ventilation compared to the natural ventilation.10291032Curtis, S.E., (1983) Environmental Management in Animal Agriculture, , Ames, Iowa: Iowa State University PressMiragliotta, M.Y., (2001) Avaliação das condições do ambiente interno em dois galpões de produção comercial de frangos de corte, com ventilacao e densidade populacional diferenciados, , 106 p. Dissertação Mestrado, Universidade Estadual de Campinas, Campinas-SPMiragliotta, M.Y., 1. A. Naas, F. F. Nascimento, and F. S. Chiste. 2003. Jaboticabal: CONBEA 2003CD-ROMMount, L.E., (1919) Adaptation to Thermal Environment. Man and His Productive Animals, , London: Edward Arnold PublishersMouraD. J. 2001. 1st ed. Jaboticabal. FUNEP 20012:75- 148Nienaber, J.A., Hahn, G.L., Yen, J.T., Thermal environment effects on growing-finishing swine: Parti. Growth, feed intake and heat production (1987) Transactions of the ASAE, 30 (6), pp. 1772-1775UBA. 2007. União Brasileira de Avicultura. Disponivel em: , acessado em 25/12/2007Usry, J.L., Turner, L., Bridges, T.C., Nienaber, J.A., Modeling the physiological growth of swine: Part III. Heatproduction and interaction with environment (1992) Transactions of the ASAE, 35 (3), pp. 1035-1042Van Wagenber, A. V., B. T. Bjerg. 2004. G.P.A. CIGR. Manuscript BC 03 020Xin, H., Berry, I.L., Tabler, G.T., Barton, T.L., Temperature and humidity profiles of broiler houses with experimental conventional and tunnel ventilation (1994) Transactions of the ASAE, 10 (4), pp. 535-542Xin, H., De Shazer, J.A., Beck, M.M., Responses of prefasted growing turkeys to acute heat exposure (1992) Transactions of the ASAE, 35 (1), pp. 315-31

    Efeito do resfriamento evaporativo e do balanço eletrolítico sobre a lactação de porcas em condições de verão tropical

    No full text
    O experimento foi realizado em uma granja comercial com 72 fêmeas suínas da genética DanBred(r) e objetivou avaliar os efeitos do resfriamento evaporativo e do balanço eletrolítico sobre o desempenho e os parâmetros de termorregulação de porcas lactantes no verão. O delineamento experimental foi blocos ao acaso com quatro tratamentos em disposição fatorial 2 x 2 e 18 repetições por tratamento. Os tratamentos foram dois sistemas de ventilação (ventilação natural ou resfriamento evaporativo) e duas dietas (balanço eletrolítico de 175mEqkg-1 ou balanço eletrolítico alto de 275mEqkg-1). Os valores médios encontrados para temperatura ambiente e umidade relativa do ar foram de 24,8ºC e 64,5%, respectivamente, sendo obtidos valores diários de 31,6°C para a temperatura ambiente máxima e de 19,8°C para a temperatura ambiente mínima. Não houve efeito (P>0,05) significativo do resfriamento evaporativo e do balanço eletrolítico sobre o consumo de ração, a condição corporal e o intervalo desmame-estro das porcas. O sistema de resfriamento evaporativo proporcionou redução (P<0,05) na frequência respiratória e temperatura superficial mensuradas nos períodos da manhã e da tarde e na temperatura retal à tarde e aumento (P<0,10) no peso dos leitões ao desmame. A dieta com balanço eletrolítico alto não influenciou essas variáveis. Concluiu-se que a utilização do sistema de resfriamento evaporativo contribuiu para reduzir os efeitos do calor sobre as variáveis relacionadas à termorregulação das porcas em lactação durante o verão e proporcionou aumento no peso dos leitões ao desmame. Em dieta com níveis nutricionais específicos para climas quentes, o balanço eletrolítico alto não minimizou os efeitos do estresse calórico

    The Impact Of Evaporative Cooling On The Thermoregulation And Sensible Heat Loss Of Sows During Farrowing

    No full text
    Pigs are more sensitive to high environmental temperatures explained by the inability of sweating and panting properly when compared to other species of farmed livestock. The evaporative cooling system might favor the thermal comfort of animals during exposure to extreme environmental heat and reduce the harmful effects of heat stress. The purpose of this study was to assess the sensible heat loss and thermoregulation parameters from lactating sows during summer submitted to two different acclimatization systems: natural and evaporative cooling. The experiment was carried out in a commercial farm with 72 lactating sows. The ambient variables (temperature, relative humidity and air velocity) and sows physiological parameters (rectal temperature, surface temperature and respiratory rate) were monitored and then the sensible heat loss at 21days lactation was calculated. The results of rectal temperature did not differ between treatments. However, the evaporative cooling led to a significant reduction in surface temperature and respiratory rate and a significant increase in the sow's sensible heat loss. It was concluded that the use of evaporative cooling system was essential to increase sensible heat loss; thus, it should reduce the negative effects of heat on the sows' thermoregulation during summer.34610501061Albright, L.D., (1990) Environment control for animals and plants, p. 453. , St. Joseph, American Society of Agricultural EngineersAuvigne, V., Leneveu, P., Jehannin, C., Peltoniemi, O., Sallé, E., Seasonal infertility in sows: A five year field study to analyse the relative roles of heat stress and photoperiod (2010) Theriogenology, Stoneham, 74, pp. 60-66Banhazi, T.M., Seedorf, J., Rutley, D.L., Pitchford, W.S., Identification of risk factors for sub-optimal housing conditions in Australian piggeries: Part 3. Environmental parameters (2008) Journal of Agricultural Safety and Health, 14 (1), pp. 41-52. , AdelaideBanhazi, T.M., Aarnink, A., Thuy, H., Pedersen, S., Hartung, J., Payne, H., Mullan, B., Berckmans, D., Review of issues related to heat stress in intensively housed pigs (2008) Transaction of the ASABE, pp. 737-744. , St. JosephBarbari, M., Conti, L., Use of different cooling systems by pregnant sows in experimental pen. Biosystems Engineering (2009), 103, pp. 239-244. , HarpendenBenedi, J.M.H., El ambiente de los alojamentos ganaderos (1986) Servicio de Extensión Agrari. 28., 28. , Madrid: Ministerio de Agricultura, Pesca Y Alimentación. (Hojas Divulgadoras, 6/86 hd)Black, J.L., Mullan, B.P., Lorschy, M.L., Giles, L.R., Lactation in the sow during heat stress (1993) Livestock Production Science, Amsterdam, 35, pp. 153-170Bloemhof, S., Van der Waaij, E.H., Merks, J.W.M., Knol, E.F., Sow line differences in heat stress tolerance expressed in reproductive performance traits (2008) Journal of Animal Science, 86 (12), pp. 3330-3337. , ChampaignBloemhof, S., Kause, A., Knol, E.F., van Arendonk, J.A.M., Misztal, I., Heat stress effects on farrowing rate in sows: Genetic parameter estimation using within-line and crossbred models (2012) Journal of Animal Science, 90 (7), pp. 2109-2119. , ChampaignBrown-Brandl, T.M., Nienaber, J.A., Eigenberg, R.A., Xin, H., Heat and moisture production of growing-finishing gilts as affected by environmental temperature (2011) Proceedings, , ASABE ANNUAL INTERNATIONAL MEETING, 2011, Louisville. Louisville: ASABEBrown-Brandl, T.M., Eigenberg, R.A., Purswell, J.L., Determining heat tolerance in finishing pigs using thermal imaging (2012) Proceedings... Valencia: ASABE, 2012, p. 9. , INTERNATIONAL LIVESTOCK ENVIRONMENT SYMPOSIUM, ValenciaCordeau, S., Barrington, S., Heat balance for two commercial broiler barns with solar preheated ventilation air (2010) Biosystems Engineering, 107 (3), pp. 232-241. , HarpendenEichen, A., Lucy, M.C., Safranski, T.J., Coate, E.A., Williams, A.M., Spiers, D.E., Heat stress effects on sow reproductive performance using simulated forced air and evaporative cooling systems (2008) Proceedings..., 8, pp. 773-779. , LIVESTOCK ENVIRONMENT CONFERENCE., 2008, Foz do Iguaçu Transaction of ASABEIncropera, F.R., Dewitt, D.P., (2003) Fundamentos de Transferência de calor e de massa, p. 698. , Rio de Janeiro: LTC-Livros técnicos e científicos EditoraJacobson, L.D., Energy and ventilation management issues in U (2011) S. pig buildings., pp. 117-123. , LONDON SWINE CONFERENCE - EXPLORING THE FUTURE, Ontario. Proceedings..Jiang, M., Gebremedhin, K.G., Albright, L.D., Numerical Simulation of Coupled Heat and Mass Transfer through the Hair Coat (2004) Proceedings, , Ontario, ASAE/CSAE ANNUAL INTERNATIONAL MEETINGJohnson, R.A., Wichern, D.W., (2001) Applied multivariate statistical analysis, , New Jersey: University of Wisconsin, Prentice HallKemp, B., Wientjes, A.J., Leeuwen, V., Hoving, L., Soede, N., (2011) Key factors to improve production and longevity of primiparous sows, 2011, pp. 13-22. , SIMPÓSIO INTERNACIONAL DE SUINOCULTURA. PRODUÇÃO, REPRODUÇÃO E SANIDADE SUÍNA. Porto Alegre. Anais.Lima, A.L., Oliveira, R.F.M., Donzele, J.L., Fernandes, H.C., Campos, H.R.F., Antunes, M.V.L., Resfriamento do piso da maternidade para porcas em lactação no verão (2011) Revista Brasileira de Zootecnia, 40 (4), pp. 804-811. , Viçosa, MGMadzimure, J., Chimonyo, M., Zander, K.K., Dzama, K., Diurnal heat-related physiological and behavioural responses in South African indigenous gilts (2012) Journal of Arid Environments, 87, pp. 29-34. , CincinattiMalmkvist, J., Pedersen, L.J., Kammersgaard, T.S., Jorgensen, E., Influence of thermal environment on sows around farrowing and during the lactation period (2012) Journal of Animal Science, 90 (9), pp. 3186-3199. , Champaign, SepMartin, W.R., (2012) Effects of heat stress on thermoregulation, reproduction and performance of different parity sows, p. 154. , Thesis (Master of Science) - Faculty of the Graduate School University of Missouri, Missouri. 2012Martins, T.D.D., Costa, A.N., Silva, J.H.V., Respostas termorreguladoras de matrizes suínas híbridas em lactação, mantidas em ambiente quente (2008) Ciência agrotécnica, Lavras, 32 (3), pp. 961-968(2005), MINITAB. Versão 15.1.0.0. IncMorales, O.E.S., Gonçalves, M.A.D., Storti, A.A., Bernardi, M.L., Wentz, I., Bortolozzo, F.P., Aspectos produtivos de fêmeas suínas e suas leitegadas em diferentes sistemas de ambiência na maternidade (2009) Anais, 14, pp. 265-266. , CONGRESSO BRASILEIRO DE VETERINÁRIOS ESPECIALISTAS EM SUÍNOS, UberlândiaMoura, D.J., Maia, A.P.A., Vercellino, R.A., Medeiros, B.B.L., Sarubbi, J., Griska, R., Uso da termografia infravermelha na análise da termorregulação de cavalo em treinamento (2011) Engenharia Agrícola, 31 (1), pp. 23-32. , Jaboticabal, jan/fev(2011) Provide proper swine care to improve swine well-being: ventilation. Des Moines, pp. 98-99. , National Pork Board Swine Care HandbookPang, Z., Li, B., Xin, H., Yuan, X., Wang, C., Characterization of an experimental water-cooled cover for sows (2010) Biosystems Engineering, Harpenden, 105, pp. 439-447Pang, Z., Li, B., Xin, H., Xi, L., Wang, C., Cao, W., Li, W., Field evaluation of a water-cooled cover for cooling sows in hot and humid climates (2011) Biosystems Engineering, Harpenden, 110, pp. 413-420Pauli, D.G., Silva, J.N., Vigoderis, R.B., Tinoco, I.F.F., Galvarro, S.F.S., Desenvolvimento de um software para o dimensionamento de sistemas de ventilação e resfriamento evaporativo em instalações avícolas climatizadas (2008) Revista Engenharia na Agricultura, 16 (2), pp. 167-179. , Viçosa, MGRenaudeau, D., Quiniou, N., Noblet, J., Effects of exposure to high ambient temperature and dietary protein level on performance of multiparous lactating sows (2001) Journal of Animal Science, 79, pp. 1240-1249. , ChampaignRenaudeau, D., Kerdoncuff, M., Anaïs, C., Gourdine, J.L., Effect of temperature level on thermal acclimation in Large White growing pigs (2008) Animals, 2 (11), pp. 1619-1626. , LondonSilva, B.A.N., Oliveira, R.F.M., Donzele, J.L., Fernandes, H.C., Lima, A.L., Renaudeau, D., Noblet, J., Effect of floor cooling and dietary amino acids content on performance and behaviour of lactating primiparous sows during summer (2009) Livestock Science, 120, pp. 25-34. , AmsterdamTeixeira, H., Teixeira, A.S., Lopes, S.P., Efeito do resfriamento adiabático evaporativo e da ventilação forçada no desempenho de porcas lactantes e suas leitegadas (2004) Engenharia na Agricultura, 12 (1), pp. 51-56. , Viçosa, MGThuy, H.T.T., (2005) Heat stress in growing pigs, 163. , Thesis (PhD). Wageningen Institute of Animal Science, Wageningen University, Wageningen. 2005Tolon, Y.B., Nääs, I.A., Avaliação de tipos de ventilação em maternidade de suínos (2005) Engenharia Agrícola, 25 (3), pp. 565-574. , JaboticabalZumbach, B., Misztal, I., Tsuruta, S., Sanchez, J.P., Azain, M., Herring, W., Holl, J., Culbertson, M., Genetic components of heat stress in finishing pigs: development of a heat load function (2008) Journal of Animal Science, 86, pp. 2082-2088. , Champaig

    Mapping Of The Internal Environment And Contour Conditions Of Housing For Broilers Using Computational Fluid Dynamics Techniques

    No full text
    The housing environment of broilers has a direct influence on production, because an unhealthy indoor environment affects poultry welfare. The objective of this study was to map the internal environment of the broiler house and detect the dispersion of gaseous pollutants through simulation, with the aim of achieving welfare and comfort for the poultry. For this, we used CFD (Computational Fluid Dynamics) techniques with which it was possible to estimate various situations for the same problem by changing parameters, verifying the results for different boundary conditions and analysing the risks with confidence and speed. Data were collected in two sheds at a commercial broiler farm located in Campinas, for broilers at 28, 35 and 42 days old. In both sheds G1 and G2, the conditions near the hoods were of higher intensity than other locations in the shed, with no homogeneity in the region of the litter. The simulator proved to be a good tool for determining the behaviour of NH3 and of the air circulating inside the sheds.658663FancomBrewer, S.K., Costello, T.A., In situ measurement of ammonia volatilization from broiler litter using an enclosed air chamber (1999) Transaction of ASAE, 42 (5), pp. 1415-1422Coelho, C.N., Borges, M., Ocomplexo agro-industrial (CAI ) da Avicultura (1999) Revista de Política Agrícola, 8 (3), pp. 1-36. , http://www.agricultura.gov.br/spa/rpa3tri99/3t99s2a2.htm, Disponível emMiragliotta, M.Y., Nääs, I.A., Baracho, M.S., Aradas, M.E.C., Qualidade do ar de dois sistemas produtivos de frangos de corte com ventilação e densidade diferenciadas-Estudo de casos (2002) Revista Engenharia Agricola, 22 (1), pp. 1-10. , JaboticabalRedwine, J.S., Lacey, R.E., Mukhtar, S., Carey, J.B., Concentration and emissions of ammonia and particulate matter in tunnel-ventilated broiler houses under summer conditions in Texas (2002) U.S. Transactions of ASAE, 45 (4), pp. 1101-110

    Heat Transfer To Calculate Minimum Ventilation Rates For Broilers House

    No full text
    The correct use of minimum ventilation and heating system on broiler's brooding phase is important even in tropical climates such as Brazil. Thus, the study of heat exchange is important to determine new materials of insulation for the walls and roof, in order to achieve optimal levels of thermal comfort to raise the birds. The objective of this study was to evaluate the actual minimum ventilation rate compared to the ideal ventilation rate calculated throw the heat balance of the brooding area from a tunnel ventilated broiler house totally closed with black side curtains and to improve the minimum ventilation and the heating systems to reach the ideal temperature inside the brooding area. The trail was performed at Mombuca city, State of São Paulo. The broiler house had a brooding area that was divided in 80 grids to collect the climatic variables (dry bulb temperature, relative humidity and air velocity) at the birds' level and inside and outside the broiler house and the CO2 concentration was collected only inside the brooding area. The inside and outside surface temperature of all the brooding area (curtains, ceiling and roof) was collected using a thermograph camera. All data were collected 4 times a day (9AM, 2PM, 5PM and 9PM), in winter-time. The minimum ventilation rate was calculated according the methodology proposed by Albright (1990). The temperature was always below the ideal temperature according Nicholson et al. 2004 demonstrating the need of a 58Kg of diesel/day to reach the birds ideal temperature.381387Albright, L.D., (1990) Environmental Control for Animals and Plants, , St. Joseph, MI: ASAE Textbook(1989) Handbook of Fundamentals, , ASHRAE, Atlanta, G.A.: American Society of heating, refrigerating, and Air Conditioning Engineers, IncBarnwell, B., Wilson, M., Importance of minimum ventilation (2005) Technical Focul Cobb, 1Blanes, V., Pedersen, S., Ventilation flow in pig houses measured and calculated by carbon dioxide, moisture and heat balance equations (2005) Biosystems Engineering, 92 (4), pp. 483-493. , DOI 10.1016/j.biosystemseng.2005.09.002, PII S1537511005002114(2008) Manual de Manejo de Frangos de Corte, , COBB - VANTRESS, INC. Cobb - Vantress Brasil, LTDACordeau, S., Barrington, S., Heat balance for two commercial broiler barns with solar preheated ventilation air Biosystems Engineering, 107, pp. 232-241Furtado, D.A., Dantas, R.T., Nascimento, J.W.B., Santos, J.T., Costa, F.G.P., Efeitos de diferentes sistemas de acondicionamento ambiente sobre o desempenho produtivo de frangos de corte Revista Brasileira de Engenharia Agrícola e Ambiental, 10 (2), pp. 484-489(2007) V.3.0-2-Sep07: Pontos de Controle e Critérios de Cumprimento: Garantia Integrada Da Fazenda - Aves, p. 22. , GLOBALG.APManning, L., Chadd, S.A., Baines, R.N., Key health and welfare indicators for broiler production (2007) Poultry Science, 63, pp. 63-68Medeiros, C.M., Baêta, F.C., Oliveira, R.F.M., Tinôco, I.F.F., Albino, L.F.T., Cecon, P.R., Efeitos da temperatura, umidade relativa e velocidade do ar em frangos de corte (2005) Engenharia Na Agricultura, 13 (4), pp. 277-286Miles, D.M., Owens, P.R., Rowe, D.E., Spatial variability of litter gaseous flux within a commercial broiler house: Ammonia, nitrous oxide, carbon dioxide, and methane (2006) Poultry Science, 85 (2), pp. 167-172. , http://ps.fass.org/cgi/reprint/85/2/167Miles, D.M., Rowe, D.E., Owens, P.R., Winter broiler litter gases and nitrogen compounds: Temporal and spatial trends (2008) Atmospheric Environment, 42 (14), pp. 3351-3363. , DOI 10.1016/j.atmosenv.2006.11.056, PII S1352231006012027Miles, J.W., Cardona, C., Sotelo, G., Recurrent selection in a synthetic brachiaria grass population improves resistance to three spittlebug species (2006) Crop Science, 46, pp. 1088-1093Nicholson, F.A., Chambers, B.J., Walker, A.W., Ammonia emissions from broiler litter and laying hen manure management systems (2004) Biosystems Engineering, 89 (2), pp. 175-185. , DOI 10.1016/j.biosystemseng.2004.06.006, PII S1537511004001199Pauli, D.G., Silva, J.N., Vigoderis, R.B., Tinoco, I.F.F., Galvarro, S.F.S., Desenvolvimento de um software para o dimensionamento de sistemas de ventilação e resfriamento evaporativo em instalações avícolas climatizadas (2008) Revista Engenharia Na Agricultura, 16 (2), pp. 167-179Redwine, J.S., Lacey, R.E., Mukhtar, S., Carey, J.B., Concentration and emissions of ammonia and particulate matter in tunnel-ventilated broiler houses under summer conditions in Texas (2002) Transactions of the American Society of Agricultural Engineers, 45 (4), pp. 1101-1109Tao, X., Xin, H., Temperature-Humidity-Velocity Index for market-size broilers (2003) Proc of the 2003 ASAE Annual International Meeting, , Paper No. 03403

    Litter And Air Quality In Different Broiler Housing Conditions [qualidade Da Cama E Do Ar Em Diferentes Condições De Alojamento De Frangos De Corte]

    No full text
    The objective of this work was to assess the initial conditions of poultry housing for one-day-old chicks regarding the quality of reused bedding and of the air in commercial broiler houses with different types of minimum ventilation and typology, using geostatistical analysis. The experiment was carried out in four broiler houses: Blue House I (T1) and Blue House II (T2), Dark House (T3), and Conventional (T4). The following variables were evaluated: pH, moisture, surface temperature, and ammonia concentration, and samples were collected at bird height at 80 equidistant points in the brooding areas. Geostatistical analysis helped to identify the environmental critical control points. The management of minimum ventilation is not sufficient to guarantee air quality in the brooding area. The reused coffee and rice husk beds (T1 and T2) show better quality than the reused wood shaving beds (T3 and T4). The minimum ventilation system, in T2 and T4, is the most efficient regarding air renovation inside the brooding areas.464351361dos Araújo, J.S., de Oliveira, V., Braga, G.C., Desempenho de frangos de corte criados em diferentes tipos de cama e taxa de lotação (2007) Ciência Animal Brasileira, 8, pp. 59-64de Avila, S., Mazzuco, H., de Figueiredo, E.A.P., (1992) Cama de aviário: materiais, reutilização, uso como alimento e fertilizante, p. 38. , Concórdia: Embrapa-CNPSA, (Embrapa-CNPSA. Circular técnica, 16)Ministério da Agricultura e Reforma Agrária (1992) Regras para análise da qualidade e produtividade, p. 180. , Brasil. Brasília: MDACalvet, S., Cambra-López, M., Blanes-Vidal, V., Estellés, F., Torres, A.G., Ventilation rates in mechanically-ventilated commercial poultry buildings in Southern Europe: measurement system development and uncertainty analysis (2010) Biosystems Engineering, 30, pp. 423-432Cambardella, C.A., Moorman, T.B., Novak, J.M., Parkin, T.B., Karlen, D.L., Turco, R.F., Konopka, A.E., Field scale variability of soil properties in Central Iowa soils (1994) Soil Science Society of America Journal, 58, pp. 1501-1511(2008) Manual de manejo de frangos de corte, 66. , Cobb-Vantress BrasilCressie, N.A.C., (1993) Statistics for spatial data, p. 900. , New York: John WileyDao, T.H., Zhang, H., Rapid composition and source screening of heterogeneous poultry litter by x-ray fluorescence spectrometry (2007) Annals of Environmental Science, 1, pp. 69-79Elliot, H.A., Collins, N.E., Factors affecting ammonia release in broiler houses (1982) Transactions of ASAE, 25, pp. 413-424Gallo, B.B., Penumbra: a tecnologia Dark House e suas características (2009) Revista Produção Animal - Avicultura, (26), pp. 30-33(2007) Pontos de controle e critérios de cumprimento: garantia integrada da fazenda - aves, p. 22. , GLOBALGAP. Cologne: GLOBALGAP(2009) Surfer mapping system, , Golden Software. Version 9. Golden: Golden SoftwareGonzáles, E., Saldanha, E.S.P.B., Os primeiros dias de vida do frango e a produtividade futura (2001) Anais, pp. 310-327. , CONGRESSO BRASILEIRO DE ZOOTECNIA, 11.CONGRESSO INTERNACIONAL DE ZOOTECNIA, 3., Goiânia. Goiânia: Universidade Católica de Goiás, 2001Hernandes, R., Cazetta, J.O., Método simples e acessível para determinar amônia liberada pela cama aviária (2001) Revista Brasileira de Zootecnia, 30, pp. 824-829Hernandes, R., Cazetta, J.O., de Moraes, M.B., Frações nitrogenadas, glicídicas e amônia liberada pela cama de frangos de corte em diferentes densidades e tempos de confinamento (2002) Revista Brasileira de Zootecnia, 31, pp. 1795-1802Jones, E.K.M., Wathes, C.M., Webster, A.J.F., Avoidance of atmospheric ammonia by domestic fowl and the effect of early experience (2005) Applied Animal Behaviour Science, 90, pp. 293-308Kelleher, B.P., Leahy, J.J., Henihan, A.M., O'Dwyer, T.F., Sutton, D., Leahy, M.J., Advances in poultry litter disposal technology - a review (2002) Bioresource Technology, 83, pp. 27-36Manning, L., Chadd, S.A., Baines, R.N., Key health and welfare indicators for broiler production (2007) Worlds Poultry Science Journal, 63, pp. 46-62Miles, D.M., Owens, R., Rowe, D.E., Spatial variability of litter gaseous flux within a commercial broiler house: ammonia, nitrous oxide, carbon dioxide, and methane (2006) Poultry Science, 85, pp. 167-172Miles, D.M., Rowe, D.E., Owens, P.R., Winter broiler litter gases and nitrogen compounds: temporal and spatial trends (2008) Atmospheric Environment, 42, pp. 3351-3363de Oliveira, J.E., Sakomura, N.K., Figueiredo, A.N., de Lucas Júnior, J., dos Santos, T.M.B., Efeito do isolamento térmico de telhado sobre o desempenho de frangos de corte alojados em diferentes densidades (2000) Revista Brasileira de Zootecnia, 29, pp. 1427-1434de Oliveira, M.C., Almeida, C.V., Andrade, D.O., Rodrigues, S.M.M., Teor de matéria seca, pH e amônia volatilizada da cama de frango tratada ou não com diferentes aditivos (2003) Revista Brasileira de Zootecnia, 32, pp. 951-954Owada, A.N., Nääs, I.A., de Moura, D.J., dos Baracho, M.S., Estimativa de bem-estar de frango de corte em função da concentração de amônia e grau de luminosidade no galpão de produção (2007) Engenharia Agrícola, 27, pp. 611-618Qiu, G., Guo, M., Quality of poultry litter-derived granular activated carbon (2010) Bioresource Technology, 101, pp. 379-386Robertson, G.P., (2008) GS+ geostatistics for the environmental sciences, , Version 7. Plainwell: Gamma Desing Software(2002) The statistical analysis system for Windows, , SAS INSTITUTE. Version 9. Cary: SAS InstituteTasistro, A.S., Kissel, D.E., Bush, P.B., Spatial variability of broiler litter composition in a chicken house (2004) Journal of Applied Poultry Research, 13, pp. 29-43Traldi, A.B., de Oliveira, M.C., Duarte, K.F., de Moraes, V.M.B., Avaliação de probióticos na dieta de frangos de corte criados em cama nova ou reutilizada (2007) Revista Brasileira de Zootecnia, 36, pp. 660-665Vieira, S.R., Geoestatística em estudos de variabilidade espacial do solo (2000) Tópicos em ciência do solo, pp. 1-53. , NOVAIS, R.F. deALVAREZ V., V.H.SCHAEFER, C.E.G.R. (Ed.). Viçosa: Sociedade Brasileira de Ciência do SoloWarrick, A.W., Nielsen, D.R., Spatial variability of soil physical properties in the field (1980) Applications of soil physics, pp. 319-344. , HILLEL, D. (Ed.). New York: AcademicWeaver Junior, W.D., Meijerhof, R., The effect of different levels of relative humidity and air movement on litter conditions, ammonia levels, growth, and carcass quality for broiler chickens (1991) Poultry Science, 70, pp. 746-75
    corecore