30,025 research outputs found

    Symmetry Breaking Study with Deformed Ensembles

    Full text link
    A random matrix model to describe the coupling of m-fold symmetry in constructed. The particular threefold case is used to analyze data on eigenfrequencies of elastomechanical vibration of an anisotropic quartz block. It is suggested that such experimental/theoretical study may supply powerful means to discern intrinsic symmetries in physical systems.Comment: 12 pages, 5 figure

    Cosmic homogeneity: a spectroscopic and model-independent measurement

    Get PDF
    Cosmology relies on the Cosmological Principle, i.e., the hypothesis that the Universe is homogeneous and isotropic on large scales. This implies in particular that the counts of galaxies should approach a homogeneous scaling with volume at sufficiently large scales. Testing homogeneity is crucial to obtain a correct interpretation of the physical assumptions underlying the current cosmic acceleration and structure formation of the Universe. In this Letter, we use the Baryon Oscillation Spectroscopic Survey to make the first spectroscopic and model-independent measurements of the angular homogeneity scale θh\theta_{\rm h}. Applying four statistical estimators, we show that the angular distribution of galaxies in the range 0.46 < z < 0.62 is consistent with homogeneity at large scales, and that θh\theta_{\rm h} varies with redshift, indicating a smoother Universe in the past. These results are in agreement with the foundations of the standard cosmological paradigm.Comment: 5 pages, 2 figures, Version accepted by MNRA

    Forecasting cosmological constraints from age of high-z galaxies

    Full text link
    We perform Monte Carlo simulations based on current age estimates of high-z objects to forecast constraints on the equation of state (EoS) of the dark energy. In our analysis, we use two different EoS parameterizations, namely, the so-called CPL and its uncorrelated form and calculate the improvements on the figure of merit for both cases. Although there is a clear dependence of the FoM with the size and accuracy of the synthetic age samples, we find that the most substantial gain in FoM comes from a joint analysis involving age and baryon acoustic oscillation data.Comment: 4 pages, 13 figures, late

    Probing the two-scale-factor universality hypothesis by exact rotation symmetry-breaking mechanism

    Full text link
    We probe the two-scale factor universality hypothesis by evaluating, firstly explicitly and analytically at the one-loop order, the loop quantum corrections to the amplitude ratios for O(NN) λϕ4\lambda\phi^{4} scalar field theories with rotation symmetry-breaking in three distinct and independent methods in which the rotation symmetry-breaking mechanism is treated exactly. We show that the rotation symmetry-breaking amplitude ratios turn out to be identical in the three methods and equal to their respective rotation symmetry-breaking ones, although the amplitudes themselves, in general, depend on the method employed and on the rotation symmetry-breaking parameter. At the end, we show that all these results can be generalized, through an inductive process based on a general theorem emerging from the exact calculation, to any loop level and physically interpreted based on symmetry ideas.Comment: 17 pages, 3 figure

    Experimental Observation of Quantum Correlations in Modular Variables

    Full text link
    We experimentally detect entanglement in modular position and momentum variables of photon pairs which have passed through DD-slit apertures. We first employ an entanglement criteria recently proposed in [Phys. Rev. Lett. {\bf 106}, 210501 (2011)], using variances of the modular variables. We then propose an entanglement witness for modular variables based on the Shannon entropy, and test it experimentally. Finally, we derive criteria for Einstein-Podolsky-Rosen-Steering correlations using variances and entropy functions. In both cases, the entropic criteria are more successful at identifying quantum correlations in our data.Comment: 7 pages, 4 figures, comments welcom

    Cosmological constant constraints from observation-derived energy condition bounds and their application to bimetric massive gravity

    Full text link
    Among the various possibilities to probe the theory behind the recent accelerated expansion of the universe, the energy conditions (ECs) are of particular interest, since it is possible to confront and constrain the many models, including different theories of gravity, with observational data. In this context, we use the ECs to probe any alternative theory whose extra term acts as a cosmological constant. For this purpose, we apply a model-independent approach to reconstruct the recent expansion of the universe. Using Type Ia supernova, baryon acoustic oscillations and cosmic-chronometer data, we perform a Markov Chain Monte Carlo analysis to put constraints on the effective cosmological constant Ωeff0\Omega^0_{\rm eff}. By imposing that the cosmological constant is the only component that possibly violates the ECs, we derive lower and upper bounds for its value. For instance, we obtain that 0.59<Ωeff0<0.910.59 < \Omega^0_{\rm eff} < 0.91 and 0.40<Ωeff0<0.930.40 < \Omega^0_{\rm eff} < 0.93 within, respectively, 1σ1\sigma and 3σ3\sigma confidence levels. In addition, about 30\% of the posterior distribution is incompatible with a cosmological constant, showing that this method can potentially rule it out as a mechanism for the accelerated expansion. We also study the consequence of these constraints for two particular formulations of the bimetric massive gravity. Namely, we consider the Visser's theory and the Hassan and Roses's massive gravity by choosing a background metric such that both theories mimic General Relativity with a cosmological constant. Using the Ωeff0\Omega^0_{\rm eff} observational bounds along with the upper bounds on the graviton mass we obtain constraints on the parameter spaces of both theories.Comment: 11 pages, 4 figures, 1 tabl
    corecore