19,337 research outputs found

    Detection of Exotic Massive Hadrons in Ultra High Energy Cosmic Ray Telescopes

    Full text link
    We investigate the detection of exotic massive strongly interacting hadrons (uhecrons) in ultra high energy cosmic ray telescopes. The conclusion is that experiments such as the Pierre Auger Observatory have the potential to detect these particles. It is shown that uhecron showers have clear distinctive features when compared to proton and nuclear showers. The simulation of uhecron air showers, and its detection and reconstruction by fluorescence telescopes is described. We determine basic cuts in observables that will separate uhecrons from the cosmic ray bulk, assuming this is composed by protons. If these are composed by heavier nucleus the separation will be much improved. We also discuss photon induced showers. The complementarity between uhecron detection in accelerator experiments is discussed.Comment: 9 page 9 figure

    Construction of SU(3) irreps in canonical SO(3)-coupled bases

    Full text link
    Alternative canonical methods for defining canonical SO(3)-coupled bases for SU(3) irreps are considered and compared. It is shown that a basis that diagonalizes a particular linear combination of SO(3) invariants in the SU(3) universal enveloping algebra gives basis states that have good KK quantum numbers in the asymptotic rotor-model limit.Comment: no figure

    Mesoscopic theory for size- and charge- asymmetric ionic systems. I. Case of extreme asymmetry

    Full text link
    A mesoscopic theory for the primitive model of ionic systems is developed for arbitrary size, λ=σ+/σ\lambda=\sigma_+/\sigma_-, and charge, Z=e+/eZ=e_+/|e_-|, asymmetry. Our theory is an extension of the theory we developed earlier for the restricted primitive model. The case of extreme asymmetries λ\lambda\to\infty and ZZ \to\infty is studied in some detail in a mean-field approximation. The phase diagram and correlation functions are obtained in the asymptotic regime λ\lambda\to\infty and ZZ \to\infty, and for infinite dilution of the larger ions (volume fraction np1/Zn_p\sim 1/Z or less). We find a coexistence between a very dilute 'gas' phase and a crystalline phase in which the macroions form a bcc structure with the lattice constant 3.6σ+\approx 3.6\sigma_+. Such coexistence was observed experimentally in deionized aqueous solutions of highly charged colloidal particles

    COLD FLOW NUMERICAL ANALYSIS OF GAS MICROTURBINE COMBUSTION CHAMBER THROUGH CFD TOOL

    Get PDF
    Gas turbines are equipment used mainly in the generation of electric energy. They have as one of their main components the combustion chamber. Therefore, it is relevant to study the characteristics of this component, in order to reach a satisfactory operation. In this context, this paper presents an analysis of a combustion chamber applied to a gas turbine with a cold flow approach using the numerical theoretical method, through the computational fluid dynamics technique. In this experiment, the software Abaqus CFD (computational fluid dynamics) – present in the 3DExperience platform – and the finite volume method are used. The objective was to evaluate the flow, pressure and velocity profiles during the single-phase flow. The gas turbine prototype is configured using a combustion chamber of reverse flow type in order to decrease flow velocity and increase the combustion efficiency. Based on input data obtained from practical experiments, the calculation of the number and Reynolds confirmed – according to the literature of fluid mechanics – the occurrence of a flow classified as turbulent, with chaotic and random motion, what allows defining the ideal point of injection from analysis of velocity plots with stream lines. In addition, a Mach number smaller than 0.3 confirms the theory of having an incompressible flow, in which compressibility effects can be disregarded. The analysis of mass flow rates of the combustion zones made it possible to evaluate maximum differences of 3% between the design data and the one found in the study. To determine the inherent error of the mesh in the CFD study was calculated through the grid conference method, the value found was around 2.68%

    Correlations around an interface

    Full text link
    We compute one-loop correlation functions for the fluctuations of an interface using a field theory model. We obtain them from Feynman diagrams drawn with a propagator which is the inverse of the Hamiltonian of a Poschl-Teller problem. We derive an expression for the propagator in terms of elementary functions, show that it corresponds to the usual spectral sum, and use it to calculate quantities such as the surface tension and interface profile in two and three spatial dimensions. The three-dimensional quantities are rederived in a simple, unified manner, whereas those in two dimensions extend the existing literature, and are applicable to thin films. In addition, we compute the one-loop self-energy, which may be extracted from experiment, or from Monte Carlo simulations. Our results may be applied in various scenarios, which include fluctuations around topological defects in cosmology, supersymmetric domain walls, Z(N) bubbles in QCD, domain walls in magnetic systems, interfaces separating Bose-Einstein condensates, and interfaces in binary liquid mixtures.Comment: RevTeX, 13 pages, 6 figure

    Bayesian Centroid Estimation for Motif Discovery

    Get PDF
    Biological sequences may contain patterns that are signal important biomolecular functions; a classical example is regulation of gene expression by transcription factors that bind to specific patterns in genomic promoter regions. In motif discovery we are given a set of sequences that share a common motif and aim to identify not only the motif composition, but also the binding sites in each sequence of the set. We present a Bayesian model that is an extended version of the model adopted by the Gibbs motif sampler, and propose a new centroid estimator that arises from a refined and meaningful loss function for binding site inference. We discuss the main advantages of centroid estimation for motif discovery, including computational convenience, and how its principled derivation offers further insights about the posterior distribution of binding site configurations. We also illustrate, using simulated and real datasets, that the centroid estimator can differ from the maximum a posteriori estimator.Comment: 24 pages, 9 figure

    Seca do frutos do açaizeiro no estado do Pará.

    Get PDF
    Objetivou-se relatar a seca dos frutos do açaizeiro, em três diferentes municípios do estado do Pará, safra 2014. Amostras de frutos secos dos municípios de Abaetetuba e Belém foram analisadas no Laboratório de Fitopatologia da Embrapa Amazônia Oriental e do município de Igarapé Mirim no Laboratório de Microbiologia de Alimentos do IFPA - Campus Castanhal, respectivamente. Os frutos foram incubados em caixas do tipo 'gerbox' à temperatura de 25±2 ºC e fotoperíodo de 12h, durante até 72h. Procederam-se isolamentos diretos em placas de Petri com meio de cultura ágar-água a 20%. Frutos com esporulação do patógeno foram utilizados para o isolamento direto, sem incubação prévia, e analisados em microscópios estereoscópio e de luz. Após três dias de incubação, discos de micélios foram repicados para o meio de cultura batata dextrose ágar (BDA). Observaram-se crescimento micelial branco e, após 10 dias de incubação, verificou-se a formação de colônias de coloração acinzentada nas placas de Petri. Foram confeccionadas lâminas para microscopia de luz. Verificaram-se a presença de hifas septadas e ramificadas e intensa produção de conídios unicelulares hialinos, em ambas as amostras. A doença seca dos frutos foi confirmada em amostras oriundas dos municípios de Abaetetuba, Belém e Igarapé Mirim, com associação do fungo Colletotrichum spp
    corecore