17 research outputs found

    Sp1 Expression Is Disrupted in Schizophrenia; A Possible Mechanism for the Abnormal Expression of Mitochondrial Complex I Genes, NDUFV1 and NDUFV2

    Get PDF
    The prevailing hypothesis regards schizophrenia as a polygenic disease, in which multiple genes combine with each other and with environmental stimuli to produce the variance of its clinical symptoms. We investigated whether the ubiquitous transcription factor Sp1 is abnormally expressed in schizophrenia, and consequently can affect the expression of genes implicated in this disorder. promoter by binding to its three GC-boxes. Both activation and binding were inhibited by mithramycin.These findings suggest that abnormality in Sp1, which can be the main activator/repressor or act in combination with additional transcription factors and is subjected to environmental stimuli, can contribute to the polygenic and clinically heterogeneous nature of schizophrenia

    A Mechanism for the Polarity Formation of Chemoreceptors at the Growth Cone Membrane for Gradient Amplification during Directional Sensing

    Get PDF
    Accurate response to external directional signals is essential for many physiological functions such as chemotaxis or axonal guidance. It relies on the detection and amplification of gradients of chemical cues, which, in eukaryotic cells, involves the asymmetric relocalization of signaling molecules. How molecular events coordinate to induce a polarity at the cell level remains however poorly understood, particularly for nerve chemotaxis. Here, we propose a model, inspired by single-molecule experiments, for the membrane dynamics of GABA chemoreceptors in nerve growth cones (GCs) during directional sensing. In our model, transient interactions between the receptors and the microtubules, coupled to GABA-induced signaling, provide a positive-feedback loop that leads to redistribution of the receptors towards the gradient source. Using numerical simulations with parameters derived from experiments, we find that the kinetics of polarization and the steady-state polarized distribution of GABA receptors are in remarkable agreement with experimental observations. Furthermore, we make predictions on the properties of the GC seen as a sensing, amplification and filtering module. In particular, the growth cone acts as a low-pass filter with a time constant ∌10 minutes determined by the Brownian diffusion of chemoreceptors in the membrane. This filtering makes the gradient amplification resistent to rapid fluctuations of the external signals, a beneficial feature to enhance the accuracy of neuronal wiring. Since the model is based on minimal assumptions on the receptor/cytoskeleton interactions, its validity extends to polarity formation beyond the case of GABA gradient sensing. Altogether, it constitutes an original positive-feedback mechanism by which cells can dynamically adapt their internal organization to external signals

    Altered miRNA expression network in locus coeruleus of depressed suicide subjects

    Get PDF
    Norepinephrine (NE) is produced primarily by neurons in the locus coeruleus (LC). Retrograde and ultrastructural examinations reveal that the core of the LC and its surrounding region receives afferent projections from several brain areas which provide multiple neurochemical inputs to the LC with changes in LC neuronal firing, making it a highly coordinated event. Although NE and mediated signaling systems have been studied in relation to suicide and psychiatric disorders that increase the risk of suicide including depression, less is known about the corresponding changes in molecular network within LC. In this study, we examined miRNA networks in the LC of depressed suicide completers and healthy controls. Expression array revealed differential regulation of 13 miRNAs. Interaction between altered miRNAs and target genes showed dense interconnected molecular network. Functional clustering of predicated target genes yielded stress induced disorders that collectively showed the complex nature of suicidal behavior. In addition, 25 miRNAs were pairwise correlated specifically in the depressed suicide group, but not in the control group. Altogether, our study revealed for the first time the involvement of LC based dysregulated miRNA network in disrupting cellular pathways associated with suicidal behavior

    Melatonin inhibits nicotinic currents in cultured rat cerebellar granule neurons

    No full text
    There is limited data regarding the effects of melatonin on the activity of neuronal acetylcholine receptors (nAChRs) themselves. This study analyzes the effects of low concentrations of melatonin on nicotine-evoked currents from cerebellar granule neurons (CGNs) in culture. Using electrophysiological and Ca2+-imaging techniques, it was found a subset of rat CGNs to which nicotine application elicited both intracellular Ca2+ transients and inward whole-cell currents. These responses were mediated by heteromeric nAChRs, as assessed by their sensitivity to nicotine and time constant of current decay. Preincubating the cells with low melatonin concentrations (down to 1 pm) significantly reduced the current amplitude in a dose-dependent manner, without affecting the receptor's apparent affinity and voltage-dependency, nor the current's rise and decay time course. The inhibitory effect of melatonin was significantly reduced by luzindole, a competitive antagonist of both MT1 and MT2 melatonin receptors. In conclusion, melatonin inhibits nicotinic currents through non-a7 heteromeric nAChRs expressed by CGNs in culture, an effect that appears to be at least partially mediated by melatonin membrane receptors. Direct modulation of nicotinic receptors is accomplished at doses that are likely to be physiologically relevant, thus providing a mechanism through which melatonin circadian rhythmic levels could modulate cholinergic activity.University of Alicante (GRJ05-07 and GRJ06-06)
    corecore