658 research outputs found

    On axially symmetrical solitons in Abelian-Higgs models

    Full text link
    A numerical search for bosonic superconducting static vortex rings in a U(1)A×U(1)WU(1)_{A}\times U(1)_{W} model is presented. The fate of these rings without current, is to shrink due to their tension until extinction. The superconductivity of the loop does not seem to prevent shrinking. Current quenching takes place before stabilization.Comment: 15 pages, 8 figures, Accepted for publication in Physica

    Polarized Dirac fermions in de Sitter spacetime

    Full text link
    The tetrad gauge invariant theory of the free Dirac field in two special moving charts of the de Sitter spacetime is investigated pointing out the operators that commute with the Dirac one. These are the generators of the symmetry transformations corresponding to isometries that give rise to conserved quantities according to the Noether theorem. With their help the plane wave spinor solutions of the Dirac equation with given momentum and helicity are derived and the final form of the quantum Dirac field is established. It is shown that the canonical quantization leads to a correct physical interpretation of the massive or massless fermion quantum fields.Comment: 19 pages, LaTeX w AMS sym

    Abelian Higgs Hair for Electrically Charged Dilaton Black Holes

    Full text link
    It is argued that an electronically charged dilaton black hole can support a long range field of a Nielsen-Olesen string. Combining both numerical and perturbative techniques we examine the properties of an Abelian-Higgs vortex in the presence of the black hole under consideration. Allowing the black hole to approach extremality we found that all fields of the vortex are expelled from the extreme black hole. In the thin string limit we obtained the metric of a conical electrically charged dilaton black hole. The effect of the vortex can be measured from infinity justifying its characterization as black hole hair.Comment: 13 pages, 14 figures, Revtex, to appear in Phys.Rev.D1

    Gauge fixing and the Hamiltonian for cylindrical spacetimes

    Full text link
    We introduce a complete gauge fixing for cylindrical spacetimes in vacuo that, in principle, do not contain the axis of symmetry. By cylindrically symmetric we understand spacetimes that possess two commuting spacelike Killing vectors, one of them rotational and the other one translational. The result of our gauge fixing is a constraint-free model whose phase space has four field-like degrees of freedom and that depends on three constant parameters. Two of these constants determine the global angular momentum and the linear momentum in the axis direction, while the third parameter is related with the behavior of the metric around the axis. We derive the explicit expression of the metric in terms of the physical degrees of freedom, calculate the reduced equations of motion and obtain the Hamiltonian that generates the reduced dynamics. We also find upper and lower bounds for this reduced Hamiltonian that provides the energy per unit length contained in the system. In addition, we show that the reduced formalism constructed is well defined and consistent at least when the linear momentum in the axis direction vanishes. Furthermore, in that case we prove that there exists an infinite number of solutions in which all physical fields are constant both in the surroundings of the axis and at sufficiently large distances from it. If the global angular momentum is different from zero, the isometry group of these solutions is generally not orthogonally transitive. Such solutions generalize the metric of a spinning cosmic string in the region where no closed timelike curves are present.Comment: 12 pages, accepted for publication in Physical Review
    corecore