3,572 research outputs found
Self-Similarity of Air-Water Flows in Skimming Flows on Stepped Spillways
Skimming flows on stepped spillways are characterised by a significant rate of turbulent dissipation on the chute. Herein an advanced signal processing of traditional conductivity probe signals is developed to provide further details on the turbulent time and length scales. The technique is applied to a 22° stepped chute operating with flow Reynolds numbers between 3.8 and 7.1 E+5. The new correlation analyses yielded a characterisation of large eddies advecting the bubbles. The turbulent length scales were related to the characteristic depth Y90. Some self-similar relationships were observed systematically at both macroscopic and microscopic levels. These included the distributions of void fraction, bubble count rate, interfacial velocity and turbulence level, and turbulence time and length scales. The self-similarity results were significant because they provided a picture general enough to be used to characterise the air-water flow field in prototype spillways
Turbulent Time and Length Scale Measurements in High-Velocity Open Channel Flows
In high-velocity open channel flows, the measurements of air-water flow properties are complicated by the strong interactions between the flow turbulence and the entrained air. In the present study, an advanced signal processing of traditional single- and dual-tip conductivity probe signals is developed to provide further details on the air-water turbulent level, time and length scales. The technique is applied to turbulent open channel flows on a stepped chute conducted in a large-size facility with flow Reynolds numbers ranging from 3.8 E+5 to 7.1 E+5. The air water flow properties presented some basic characteristics that were qualitatively and quantitatively similar to previous skimming flow studies. Some self-similar relationships were observed systematically at both macroscopic and microscopic levels. These included the distributions of void fraction, bubble count rate, interfacial velocity and turbulence level at a macroscopic scale, and the auto- and cross-correlation functions at the microscopic level. New correlation analyses yielded a characterisation of the large eddies advecting the bubbles. Basic results included the integral turbulent length and time scales. The turbulent length scales characterised some measure of the size of large vortical structures advecting air bubbles in the skimming flows, and the data were closely related to the characteristic air-water depth Y90. In the spray region, present results highlighted the existence of an upper spray region for C > 0.95 to 0.97 in which the distributions of droplet chord sizes and integral advection scales presented some marked differences with the rest of the flow
The decision to go public and the IPO underpricing with locally biased investors
We provide new evidence that local investors are peculiarly biased towards local IPO stocks. Taking the well-known investor preference for local stocks a step further, we contribute by showing that local IPOs boost stock market participation far more intensely than local listed firms. Interestingly, the effect is driven by individuals born and raised in the region, having zero effect for those who have moved to the area. Consistent with underwriters significantly under-estimating the local investors’ demand in local IPOs, the probability of a private firm to go public, the IPO underpricing and the cross-sectional volatility of IPO initial returns, increase in remote firms where the local investors’ demand in local IPOs is particularly high. Overall, our results suggest that local investors are crucial for the IPO decision
Axions and the Strong CP Problem
Current upper bounds of the neutron electric dipole moment constrain the
physically observable quantum chromodynamic (QCD) vacuum angle . Since QCD explains vast experimental data from the 100 MeV
scale to the TeV scale, it is better to explain this smallness of
in the QCD framework, which is the strong \Ca\Pa problem. Now,
there exist two plausible solutions to this problem, one of which leads to the
existence of the very light axion. The axion decay constant window, $10^9\
{\gev}\lesssim F_a\lesssim 10^{12} \gev{\cal O}(1)\theta_1F_a\gtrsim 10^{12}\theta_1<{\cal O}(1)$,
axions may constitute a significant fraction of dark matter of the universe.
The supersymmetrized axion solution of the strong \Ca\Pa problem introduces its
superpartner the axino which might have affected the universe evolution
significantly. Here, we review the very light axion (theory,
supersymmetrization, and models) with the most recent particle, astrophysical
and cosmological data, and present prospects for its discovery.Comment: 47 pages with 32 figure
Ecological effects of the European barbel Barbus barbus (L., 1758) (Cyprinidae) invasion on native barbel populations in the Tiber River basin (Italy)
The purpose of this study was to investigate the effects of the European barbel Barbus barbus (L., 1758) invasion in the Tiber River basin (Italy) on the native Tiber barbel Barbus tyberinus Bonaparte, 1839, verifying whether the co-occurrence played a negative impact on growth rate and relative weight. Fish census data were collected during three periods (2000–2005, 2006–2010, 2011–2015) at 158 sampling sites. Since its first record in 1998, European barbel rapidly spread in the study area: it was present in more than 20% of the monitoring sites, where it is leading to the gradual replacement of Tiber barbel by widening its distribution in the Tiber River and in the downstream reaches of the main tributaries. By contrast, Tiber barbel has suffered from this competition, as demonstrated by the fact that the mean value of the relative weight was significantly higher where European barbel was absent. The results obtained suggested that this non-native species could be a serious threat to the conservation status of endemic Tiber barbel, and constitute the premise to underpin conservation strategies aiming to preserve native freshwater biodiversity
- …