1,822 research outputs found

    Pregelix: Big(ger) Graph Analytics on A Dataflow Engine

    Full text link
    There is a growing need for distributed graph processing systems that are capable of gracefully scaling to very large graph datasets. Unfortunately, this challenge has not been easily met due to the intense memory pressure imposed by process-centric, message passing designs that many graph processing systems follow. Pregelix is a new open source distributed graph processing system that is based on an iterative dataflow design that is better tuned to handle both in-memory and out-of-core workloads. As such, Pregelix offers improved performance characteristics and scaling properties over current open source systems (e.g., we have seen up to 15x speedup compared to Apache Giraph and up to 35x speedup compared to distributed GraphLab), and makes more effective use of available machine resources to support Big(ger) Graph Analytics

    Dissociative adsorption of methane on the Cu and Zn doped (111) surface of CeO2

    Get PDF
    The development of economical heterogeneous catalysts for the activation of methane is a major challenge for the chemical industry. Screening potential candidates becomes more feasible using rational catalyst design to understand the activity of potential catalysts for CH4 activation. The focus of the present paper is the use of density functional theory to examine and elucidate the properties of doped CeO2. We dope with Cu and Zn transition metals having variable oxidation state (Cu), and a single oxidation state (Zn), and study the activation of methane. Zn is a divalent dopant and Cu can have a +1 or +2 oxidation state. Both Cu and Zn dopants have an oxidation state of +2 after incorporation into the CeO2 (111) surface; however a Hubbard +U correction (+U = 7) on the Cu 3d states is required to maintain this oxidation state when the surface interacts with adsorbed species. Dissociation of methane is found to occur locally at the dopant cations, and is thermodynamically and kinetically more favorable on Zn-doped CeO2 than Cu-doped CeO2. The origins of this lie with the Zn(II) dopant moving towards a square pyramidal geometry in the sub surface layer which facilitates the formation of two-coordinated surface oxygen atoms, that are more beneficial for methane activation on a reducible oxide surface. These findings can aid in rational experimental catalyst design for further exploration in methane activation processes

    Enhancing the oxygen vacancy formation and migration in bulk chromium(iii) oxide by alkali metal doping: a change from isotropic to anisotropic oxygen diffusion

    Get PDF
    Oxygen vacancy formation and migration are vital properties for reducible oxides such as TiO2, CeO2 and Cr2O3 as the oxygen storage capacity (OSC) of these materials are important for a wide range of applications in photovoltaics, oxidative catalysis and solid oxide fuel cells. Substitutional doping these transition metal oxides enhances their OSC potential, in particular for oxygenation and surface reaction chemistry. This study uses density functional theory with on-site Coulomb interactions (PBE+U) for Cr 3d states (+U = 5 eV) and O 2p states (+U = 5.5 eV) to calculate the oxygen vacancy formation energy and oxygen diffusion pathways for alkali metal (Li, K, Na, Rb) doping of bulk chromium(III) oxide (α-Cr2O3). Substitutional doping of the lattice Cr3+ cations with alkali metals that have a +1 oxidation state, creates two hole states on the neighbouring lattice O atoms, and removal of a lattice oxygen charge compensates the dopants by filling the holes. The removal of the next oxygen describes the reducibility of doped Cr2O3. The oxygen vacancy formation energy is greatly promoted by the alkali dopants with a correlation between the ionic radius of the dopant cation and vacancy formation energy; larger dopants (K, Rb) improve the reducibility more than the smaller dopants (Li, Na). The activation barriers for oxygen migration along different directions in the alkali metal doped Cr2O3 bulk were also calculated to examine the effect of doping on the oxygen migration. The calculated activation energies for the undoped chromia are symmetric in three dimensions (isotropic) and the presence of the dopants break this isotropy. Alkali dopants promote oxygen migration in the oxygen intra-layers while suppressing oxygen migration across the Cr cation layers. The smaller dopants (Li, Na) facilitate easier migration in the oxygen intra-layers to a greater extent than the larger dopants (K, Rb). The Na–Cr2O3 bulk promotes both oxygen vacancy formation and migration which makes it a novel candidate for anode materials in medium temperature SOFCs and battery applications
    • …
    corecore