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Dissociative adsorption of methane on the Cu and Zn doped (111) 

surface of CeO2 

John J. Carey†* and Michael Nolan†* 

†Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork, Ireland 

KEYWORDS Methane activation, density functional theory, CeO2, transition metal doping,   

ABSTRACT: The development of economical heterogeneous catalysts for the activation of methane is 

a major challenge for the chemical industry. Screening potential candidates becomes more feasible using 

rational catalyst design to understand the activity of potential catalysts for CH4 activation. The focus of 

the present paper is the use of density functional theory to examine and elucidate the properties of doped 

CeO2. We dope with Cu and Zn transition metals having variable oxidation state (Cu), and a single oxi-

dation state (Zn), and study the activation of methane. Zn is a divalent dopant and Cu can have a +1 or 

+2 oxidation state. Both Cu and Zn dopants have an oxidation state of +2 after incorporation into the 

CeO2 (111) surface; however a Hubbard +U correction (+U=7) on the Cu 3d states is required to main-

tain this oxidation state when the surface interacts with adsorbed species. Dissociation of methane is 

found to occur locally at the dopant cations, and is thermodynamically and kinetically more favorable 

on Zn-doped CeO2 than Cu-doped CeO2. The origins of this lie with the Zn(II) dopant moving towards a 

square pyramidal geometry in the sub surface layer which facilitates the formation of two-coordinated 

surface oxygen atoms, that are more beneficial for methane activation on a reducible oxide surface. 

These findings can aid in rational experimental catalyst design for further exploration in methane activa-

tion processes.  
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1. Introduction 

Methane derived from biodegradable matter (biomass) has great potential as a renewable carbon 

source for a range of applications such as syngas,1 methanol,2 formaldehyde,3 and biofuel production.4 

The main issue associated with utilization of methane is the CH bond activation process, which has a 

large associated energy cost of 440 kJ/mol to dissociate the first CH bond of CH4 to CH3
* +H.5 A cata-

lyst is therefore required to lower the energy cost and improve the bond dissociation process for more 

efficient exploitation of methane gas. Extensive investigations of methane activation on the transition 

metal surfaces of Ni, Pt, Rh, Ir, Pd, and Ru have revealed that Pt, Rh and Ir show the most promising 

behavior to promote efficient methane activation.6-8 The associated high cost of these metals however, is 

problematic for economic implementation as heterogeneous catalysts in the petrochemical industry. In 

addition these metal surfaces are selectively poisoned over time by carbonaceous deposits from succes-

sive dehydrogenation of adsorbed CHx species (x=1-3), and oxygen ad-atoms from atmospheric O2, 

eventually rendering the catalyst inactive.9 This is a major problem in the use of transition metal cata-

lysts for CH4 activation, and therefore alternative, economical candidates but with a similar reactivity 

are desired.  

The use of a metal oxide as a support for highly dispersed transition metals improves resistivity to 

carbon poisoning, as the lattice oxygen from the support was found to interact with the carbonaceous 

deposits to form CO and CO2.10 The reducibility of the support can therefore play a role in removing the 

carbon deposits from the transition metal clusters as the more easily reducible the metal oxide surface, 

the more mobile the oxygen species are for interacting with the carbon atoms.10, 11  Investigations into 

the role of the metal oxide support on the removal of carbonaceous deposits by lattice oxygen found that 

the catalyst is regenerated after COx formation for further decomposition of methane, outlining the im-
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portance of using a reducible oxide in the catalyst bed.12, 13 The hydrogen atoms produced during the 

successive dehydrogenation of the CHx (x=1-3) species during the reaction were found to either form H2 

gas and/or interact with lattice oxygen or atmospheric oxygen to form H2O.14 The formation of CO and 

H2 from CH4 activation is typical for syngas production and highly desirable;1 however thermodynamic 

selectivity towards CO2 and H2O as products is unwanted due to the low reactivity of these molecules.  

Transition metals supported on oxides were found to be reactive for the activation of the CH4, and in 

some cases more reactive than the single transition metal clusters as seen for Pd and PdO,15 indicating 

that the support does not hinder the catalytic process. The use of transition metals in these catalysts 

however, still has a large associated cost, and development of inexpensive precious metal free catalysts 

that are resistant to carbon and oxygen poisoning, while maintaining a high reactivity towards methane 

activation, are highly desirable.  

Reducible metal oxide catalysts are potential methane activation catalysts and there is a strong focus 

on improving their properties to carry out this process more efficiently.16 The role of lattice oxygen is 

found to be important for oxygenation reactions and thus can be useful to facilitate the partial oxidation 

of methane (POM) to selectively produce syngas.17-19  POM on reducible oxide catalysts has also been 

investigated for the production of methanol, formaldehyde and other useful oxygenate carbon species 

for renewable energy applications. One particular potential candidate for this process is cerium dioxide 

(CeO2) since it is a highly reducible metal oxide and exhibits favorable reactivity for methane activa-

tion.13 The presence of Ce as a non-native dopant in other transition metal supported oxide systems was 

also found to have a promoting effect on the POM reaction to produce highly desirable syngas indicat-

ing that Ce plays an important role for this reaction process.12 The incorporation of Pt into the CeO2 lat-

tice was found to improve the catalyst performance for methane activation, as the transition metal do-

pant cation enhances the formation of oxygen vacancies and thus the oxygen mobility within the CeO2 

lattice, which improves the POM reaction process.12, 20 This suggests that there is a correlation between 
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the reducibility of the metal oxide and methane activation, and therefore improving the reducibility of 

the metal oxide can increase the activity for methane activation.  

The activation of methane was investigated by density functional theory (DFT) calculations on the 

bare, Zr and Pd doped (111) surface of CeO2.21 The presence of the dopant reduced the kinetic barriers 

for activating the CH bond from 1.40eV (pure) to 1.06eV (Zr doped) and 0.22eV (Pd doped); however 

Pd being a divalent dopant should have a compensating oxygen vacancy in the CeO2 surface for a cor-

rect ground state electronic structure,22 which is not considered in ref,21 thus producing questionable re-

sults. The reduced barriers indicate that methane activation is greatly improved compared to the pure 

CeO2 (111) surface through the introduction of dopants. The enhanced POM process for Pd based ox-

ides has been investigated by experiment and DFT studies which have attributed the greater activation 

to the active PdO phase in its native oxide.15 The metal and metal oxide interaction having an improved 

performance for methane dissociation suggests that transition metals that form binary oxides such as 

PdO may be strong potential candidates for the POM process, as they can form M-O bonds in the cata-

lyst, which may offer an explanation for Pt also improving methane activation in CeO2 catalysts.10, 12   

To understand the role of doping the CeO2 lattice with transition metals to activate methane, DFT calcu-

lations have developed a relationship between bond activation energies and adsorption energies of the 

dissociation products (CH3
* + H).23 The calculations found that a linear relationship exists between the 

adsorption energy and the activation energy, with the stronger binding having a lower activation barrier. 

A correlation between oxygen vacancy formation and methane activation was also determined; dopants 

with smaller oxygen vacancy formation energies have a higher affinity to methane activation.  The 

choice of dopants to examine for methane activation was thus based on candidates with low oxygen va-

cancy formation energies, as these are; Zn, Ni, Ag, Pt, Mn, V, Pd, Zr and W. Among these dopants, the 

highest activation energy was associated with the dopant that had the lowest adsorption energy of the 

dissociated products. From these studies there are two factors that are found to govern the properties of 
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a doped CeO2 surface; (1) the oxygen vacancy formation energy of the dopant, and (2) the stability of 

the dissociated products. Examination of these quantities is important for the choice of dopant species to 

promote methane activation on the CeO2 surface.  

 Closer examination of DFT studies for methane activation on CeO2
21, 23 reveals some questions over 

the energies for the oxygen vacancy formation, C-H bond activation and methane dissociation. The ox-

ygen vacancy formation energies for dopants with a +2 valance state in their host oxide are negative 

which indicates that oxygen vacancies will be present in the +2 doped CeO2 lattice.22 The adsorption 

energies for the methane dissociation products are also very stable on the +2 doped CeO2 surfaces com-

pared to the other doped surfaces in the study. The calculated activation energy for Zn. Mn and Ni 

doped CeO2 appear to be close to or less than 0.00eV, which are questionable values since pseudo and 

real transition states are observed that may suggest complications in the approach to modelling the sur-

faces.23 The problems outlined with previous works for methane activation can be attributed to the ne-

glect of a charge compensated oxygen vacancy for a dopant species with an oxidation state of +2. Intro-

duction of +2 dopants on the Ce4+ lattice site creates two holes (positive charge) on two neighboring ox-

ygen atoms, that is, creating O- species in the CeO2 lattice. The presence of two O- species requires the 

removal of an oxygen atom to balance the positive charge with two electrons from the creation of a neu-

tral oxygen vacancy. This charge compensating vacancy conserves the overall charge of the system; 

otherwise the ground state electronic structure is incorrect and may provide questionable results for 

Cu2+, Zn2+, Mn2+ and other +2 dopants,23 which are seen to have hole states on the oxygen atoms from 

spin density plots, but the reason for this is not addressed at all, and re-evaluation of the electronic struc-

ture and energetics for these dopants is needed. The importance of the charge compensating vacancy has 

therefore been overlooked in previous DFT studies on methane activation,21, 23 which is surprising as the 

dissociation products are electron donating species that can fill the holes at the surface leading to over-

binding, and thus stabilizing adsorption products and reducing kinetic energies. The importance of the 
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charge compensating vacancy has been shown for doping bulk CeO2, CeO2 (111) and (100) surfaces 

with transition metals and alkaline earth metals that have a valence state of +2, promoting the spontane-

ous oxygen vacancy formation through charge compensation.22, 24, 25 The next oxygen is the vacancy for 

which the vacancy formation energy is relevant.22  

Potential candidates to promote methane activation at the CeO2 (111) surface through substitutional 

doping that exist in +2 oxidation states in their native oxides are Cu and Zn. These dopants have been 

shown to promote oxygen vacancy formation in the bulk CeO2 lattice,24 and may therefore improve sur-

face oxygen vacancy formation and methane activation compared to undoped CeO2. Cu2+ cations have 

been doped into CeO2 to promote reactions including the steam reforming of methanol,26 methanol syn-

thesis,27 CO oxidation,28 SO2 decomposition,29 water-gas shift reaction,30 nitrogen monoxide 

reduction,31 and methanol synthesis from CO and H2.32 The incorporation of Cu in the CeO2 lattice is 

therefore expect to promote reactions that are dependent on oxidation processes which includes the 

POM process; however to our knowledge the effect of Cu doping for methane activation on the CeO2 

(111) surface has not been addressed. Zn doped into the CeO2 lattice seen to promote oxygen vacancy 

formation,33 CO oxidation,34 and Cu-Zn-CeO2 catalysts have been examined for steam reforming of 

methanol,35 and dimethyl ether36.  

The present paper presents a DFT+U study of the methane activation on the Cu and Zn doped (111) 

surface of CeO2. The choice of Cu and Zn as dopant cations at the surface interface originates from 

these dopants having +2 oxidation states in their parent oxides. Dopants with this oxidation state will 

allow spontaneous oxygen vacancy formation potentially promoting oxygen mobility at the surface, 

which has been shown by both experiment and theory to be an important characteristic for POM cata-

lysts.20, 23 The inclusion of a charge compensating oxygen vacancy avoids inaccuracies for the adsorp-

tion of the dissociation products.  As Cu can have two oxidations states as CuO and Cu2O, thus having 

variable valence, while Zn only exists as ZnO, we will also examine the effect, if any, of dopant reduci-
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bility in CeO2 for POM. The effect of a Hubbard +U correction on the Cu and Zn 3d states is also inves-

tigated, by applying the PBE GAA, with a +U= 0eV (no correction) and U= 7 /7.8eV for Cu/Zn 3d 

states. The calculations will provide a valuable insight into the choice of dopant species for rational ex-

perimental catalyst design in the technologically significant methane activation process.   

2.  Computational Methods  

All calculations were carried out using DFT and the generalized gradient (GGA) approximation, with 

the Perdew-Burke-Ernzerhof (PBE)37 exchange-correlation functional as implemented in the Vienna ab 

initio Simulation Package (VASP).38-41 The valence electrons (Cu[3p6, 3d10, 4s1], Zn[3d10, 4s2], C/O 

[2s2, 2p3/4], Ce[5s2 5p6 6s2 5d1 4f1])  were expanded using a plane wave basis set approach, while the 

interactions with the core electrons (C/O[He], Cu/Zn[Ar], Ce[Rn]) were described using the projector 

augmented wave (PAW) approach.42 Non-spherical contributions from the gradient corrections inside 

the PAW radii are also included, which are important for accurate total energy calculations.  

To correct for the strong electronic correlation with bulk CeO2, the well-known PBE+U approach was 

used with a +U parameter of 5eV applied to the Ce 4f states which is a commonly used value in many 

studies on CeO2.43-45 For Cu and Zn, the question of the value of U in a DFT+U approach needs to be 

considered. For Zn, including a +U or self-interaction correction on the 3d states can shift the position 

of these occupied states relative to the valence band.46-48 We have checked the effect of a U value of 7.8 

eV on the Zn 3d states49 on the vacancy formation energies and the molecular adsorption energies and 

we find at most a change of 0.02 eV in these energies, with no change to the stable structures or oxida-

tion states. This indicates that the effect of the +U correction on the Zn 3d states for the properties of 

interest in this paper is negligible. 

For Cu, on the other hand, it is known that some sort of correction, whether DFT+U, Self-Interaction 

Corrected or hybrid DFT is needed to describe bulk CuO.50-52 In ref.50 a value of 7 eV was applied to 
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describe the Cu 3d states in bulk CuO and arrive at a band gap and magnetic moment that were con-

sistent with experiment and earlier self-interaction corrected results.51 Since the issues of describing 

bulk CuO with DFT involve all Cu atoms in the bulk we reasoned that for a single Cu dopant this would 

not necessarily be a significant issue. Our studies of Cu-doped CeO2 (111) have been undertaken with-

out a +U correction and with a +U correction applied to the Cu 3d states, setting U = 7 eV. The +U cor-

rection provides the correct description of the electronic structure for Cu-CeO2. The inclusion of a +U 

correction to the Cu 3d states widens the energy gap between the occupied and unoccupied Cu 3d states 

which has its more pronounced implications when adsorbates are present on the surface. If no correction 

is applied the Cu dopant can oxidize to a +3 oxidation state upon H adsorption, which in these systems 

is not realistic. All Cu-CeO2 calculations are therefore presented with a U = 7eV on the Cu 3d states; 

results for the Cu-CeO2 surfaces without a +U correction (+U=0) are supplied in the supporting infor-

mation to enable the interested reader to make a comparison between the two approaches 

Finally, we do not apply any DFT+U correction to the oxygen atoms in doped CeO2. The substitution 

of a Ce atom for a divalent cation introduces two holes as a result of the different oxidation state. In 

some systems, such as Li-doped MgO or Al-doped SiO2, a +U correction to the O 2p states was needed 

to describe consistently the resulting hole localization.53, 54 However, in the present case, along with our 

earlier work on divalent dopants in ceria,55, 56 we find that oxygen vacancy compensation of the divalent 

dopant takes place and there are no issues over describing oxygen holes, as these are compensated by 

the electrons released by oxygen vacancy formation. Accordingly the ground state of divalent doped 

CeO2 (111) is that in which an oxygen vacancy is present. 

The technical parameters within all calculations are an energy cut-off of 400eV and a Monkhorst Pack 

k-point sampling grid of (4x4x4) for bulk and (1x2x1) for the (111) surface. A (111) surface was cut 

from the bulk structure, with a slab thickness of 9 atomic layers (3 O-Ce-O trilayers) extended in the xy 

plane and a vacuum gap of 15Å above the surface to remove any slab interactions in the c vector. The 
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bottom three atomic layers (tri-layer) were held fixed in the bulk lattice positions and the top six layers 

were allowed to fully relax. The surface was expanded to a p(4x2) structure and relaxed, where the c-

vector did not require any additional sampling. Dopants were substituted for Ce cations at the surface 

lattice positions, giving a concentration of 4% and then the atomic positions were relaxed. The bulk, and 

all subsequent structures were optimized using the conjugant gradient method and deemed converged 

when the forces on the atoms were determined to be less than 0.02 eV/Å. 

 The position of the charge compensating vacancy was extensively explored in the surface and sub 

surface layers of the doped surfaces, with the oxygen vacancy formation energy being calculated by; 

Ef [comp] = (E[comp] + ½ E[O2]) – E[surf]     (1) 

Where Ef [comp] is the calculated formation energy for the compensating vacancy, E[comp] is the en-

ergy of the surface with the compensating vacancy, E[O2] is the energy for gas phase O2 and E[surf] is 

the energy of the doped surface. The active vacancy was determined by examining the removal of the 

second oxygen atom in the compensated structure and the formation energy is calculated by; 

Ef [active] = (E[active] + ½ E[O2]) – E[comp]     (2) 

Where Ef [active] is the formation energy for the active vacancy, E[active] is the energy for the surface 

with the active vacancy, E[O2] is the energy for gaseous oxygen and E[comp] is the energy for the com-

pensated structure. The energy of O2 in the vacancy formation energies is computed using the PBE-

GGA which is known to cause errors in the O2 binding energy, around 0.7 eV.57-60 Our values are there-

fore made more negative by 0.35eV (per atom) to include this error, however its inclusion will not affect 

any of the findings and trends in this paper. 

The lowest energy configuration for each of the molecular and atomic adsorbate species on the doped 

surfaces were determined by examining all possible surface adsorption sites and calculating the adsorp-

tion energy for each species by the equation; 

E[ads] = E[sys] – (E[comp] + E[gas])     (3) 
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Where E[ads] is the calculated adsorption energy, E[sys] is the energy for the adsorbate on the doped 

surface, E[comp] is the calculated energy for the compensated surface and E[gas] is the calculated ener-

gy of the molecule in the gas phase. Negative adsorption energies indicate that adsorption of the species 

is favorable; while a positive energy indicates that the adsorption is disfavored relative to the gas phase 

species. The electronic structure was analyzed using spin density plots, and partial (ion and l quantum 

number decompose) density of states (PEDOS). The charge analysis was carried out using Bader AIM 

approach,61-63 and the activation energy barriers for CH bond breaking were determined using the climb-

ing image nudged elastic band (CI-NEB) approach.64, 65 The nature of the cNEB approach we applied is 

that it will explicitly find the highest energy point on the potential energy surface between the starting 

and end structures that anchor the calculation. A vibrational calculation is used to confirm that the ob-

tained transition state is a true maximum on the potential energy surface since it has an imaginary fre-

quency associated with a single vibrational mode. The CI-NEB calculations are carried out using a 

Newton-Raphson minimization method, and are deemed converged when the forces are less than 

0.02eV/Å on Cu doped CeO2, and 0.04eV/Å on Zn doped CeO2 due to difficulties with convergence.  

 

3. 3. Results  

3.1 Bare and Reduced CeO2 (111)  

The (111) surface of CeO2 is the most thermodynamically stable surface, and has received much atten-

tion in the literature. The structure of the pure CeO2 (111) surface is well established, 43, 44 and will not 

be described in detail here. The relaxed surface and calculated PEDOS plots of the undoped CeO2 (111) 

surface are shown in Figure 1. The CeO2 (111) surface is oxygen terminated with Ce cations lying be-

low, and the PEDOS shows that the surface valence band (VB) is dominated by O 2p states, while the 

lowest unoccupied states are the localised Ce 4f states with a VB to Ce 4f gap of 2.39eV.  
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The reducibility of the (111) surface is important to mention so that a comparison can be made to the 

doped surfaces in the following sections. The most favorable position of the oxygen vacancy is well 

known to be in the subsurface layer over the surface oxygen atoms,43-45 with the oxygen vacancy reduc-

ing two Ce cations from Ce(IV) to Ce(III). A number of possible Ce(III) distributions can occur after 

oxygen vacancy formation that range in energy giving different energy solutions as a spread of 0.3 eV as 

a function of Ce(III) distributions.66-68 The oxygen vacancy formation energy within our DFT+U set up 

is calculated to be 1.84eV, falling in an acceptable range for previously reported Ce(III) distributions, 

and can be used as a guideline for comparing to the oxygen vacancy formation in the doped surfaces.  

The reduction of the Ce cations on the surface after oxygen vacancy formation, results in the presence 

of a Ce 4f defect peak in the band gap around 1.11eV between the top of the valence band (VB) and the 

unoccupied Ce 4f states. The Ce 4f defect peat is associated with the two electrons that are localized on 

two Ce(III) cations. Both electrons have up spin indicating that a ferromagnetic (FM) ground state elec-

tronic structure is preferred over an anti-ferromagnetic (AFM) for the reduced CeO2 (111) surface. The 

reduction of the Ce cations is confirmed by Bader charges which indicate a gain of 0.32 electrons com-

pared to the bare CeO2 (111) surface. Spin magnetization values of 0.99 on each reduced Ce cation fur-

ther supports this mechanism. 
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Figure 1: The calculated structure and PEDOS plots for the undoped (111) surface of CeO2. The white 

and red spheres are the lattice positions of the Ce and O atoms. The red and green lines are the O 2p and 

Ce 4f contributions to the valence and conduction bands, with the top of the valence band being aligned 

to 0eV.  

 

3.2 Cu and Zn doped CeO2 (111)   

The most favorable dopant position in the CeO2 lattice was examined by substituting one Ce cation in 

the surface or sub-surface layers. For both Cu and Zn, the dopant prefers to substitute on a surface Ce 

site, which is shown in Figure 2. Upon relaxation, irrespective of whether a +U correction is applied or 

not, the Cu dopant undergoes significant migration off the Ce lattice site to form a square planar config-

uration in which it bonds to a surface oxygen (Cu-O distance of 1.90Å), two sub-surface oxygens in the 
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same plane as Cu (Cu-O distance 1.87x2) and an oxygen in the sub layer (Cu-O, 1.93Å) that is pulled 

out of this subsurface layer. The bonds above and below the dopant are longer than the bonds in the 

plane of the dopant, consistent with a Jahn-Teller distortion. The Cu+2 dopant with a d9 configuration 

adopts this geometry to accommodate the extra electron in the high energy dx2 – y2 orbital, which is 

known for Cu+2 complexes,69 bulk CuO and Cu doped bulk CeO2.24 The displacement of Cu distorts the 

local surface geometry, leaving two oxygen surface atoms with two-fold coordination and a three-

coordinated sub-surface oxygen atom. This description of the local geometry around the Cu dopant and 

its electronic configuration is independent of the DFT approach used. 

In contrast to Cu doped CeO2, the most significant migration observed for the Zn dopant is a down-

ward shift to the next sublayer by 0.55Å, giving the Zn dopant a four coordinate distorted tetrahedral 

geometry; Zn bonds to three sub-surface oxygen with Zn-O distances of 2.00Å, and to an oxygen atom 

in the sublayer below the dopant with a Zn-O distance of 2.08Å. This oxygen migrates from its lattice 

position towards the dopant. The presence of the Zn dopant in the surface creates three two-fold coordi-

nated surface oxygen atoms, which bridge between Ce cations on the surface around the dopant.  

Cu and Zn adopt a +2 valence state when doped into the CeO2 (111) surface, and this results in for-

mation of two holes on two neighboring oxygen atoms.  A charge compensating oxygen vacancy is 

therefore required to compensate the holes on the oxygen species, and correctly describe the ground 

state electronic structure of the doped surfaces which are then used as a platform to investigate methane 

activation on Cu and Zn doped CeO2 (111) .   
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Figure 2: The calculated local structure for (a) Cu and (b) Zn doped CeO2 (111), along the (i) c and (ii) b 

vectors. The red, white, orange and purple spheres are the lattice positions of the O, Ce, Cu and Zn at-

oms.  

 

3.3 Charge compensating and active oxygen vacancies on Cu and Zn doped CeO2 (111)   

To investigate the charge compensating mechanism on Cu and Zn doped CeO2, the position of the lat-

tice oxygen atom to be removed relative to the dopant cation is determined by examining all possible 

oxygen sites relative to the dopant cation, as indicated in Figure 3. These are the two fold nearest neigh-

bor (nn) atoms on the surface layer (surf), the fully coordinated nn oxygen atoms in the sub-surface 

(sub) layer, the fully coordinate next-nearest neighbor (nnn) oxygen atoms in the surf and sub layers. 

The surface distortions arising from the inclusion of the dopant cations on the Ce lattice sites, allows 



15 

 

formation of three two-fold surface oxygen atoms that are nn-surf around the dopant, which are ex-

pected to be highly active centers for interacting with surface species.  

 

 

Figure 3: The surface structure of CeO2 (111) with the dopant site indicated by the purple sphere. The 

possible sites for the charge compensating vacancy are labelled relative to the dopant lattice position.  

 

The lowest energy configuration for the charge compensated oxygen vacancy in the compensated Cu 

and Zn doped CeO2 (111) surface is shown in Figure 4. The preferential position of the vacancy is the 

nearest neighbor surface (nn-surf) two fold coordinated oxygen atom to the dopant cation on both Cu 

and Zn doped CeO2, as indicated by the black sphere in Figure 4.  The calculated formation energy for 

the charge compensating vacancy on Cu and Zn doped CeO2 is -0.64 eV and -1.63eV, respectively. The 

negative values for the formation energies indicate that spontaneous formation occurs, so that the +2 

dopants are correctly charge compensated. While these energies will depend on the DFT+U setup, we 

know from studies of other divalent dopants, that the energies from this set up are consistent with hybrid 

DFT.55 The removal of the oxygen atom quenches the holes on the neighboring oxygen atoms since no 
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spin density is observed on them. There is spin density on the Cu dopant because with a d9 configuration 

it has one unpaired electron in its highest occupied orbital, irrespective of the DFT description of the Cu 

3d states. If a charge compensating oxygen vacancy is not present, the holes on the oxygen atoms 

formed from the presence of the dopant will be filled by the adsorption of electron donating species, 

causing over binding and potentially erroneous adsorption energies.  

The calculated PEDOS of the lowest energy configuration for the charge compensating oxygen vacan-

cy on Cu and Zn doped CeO2 (111) is also shown in Figure 4; a comparison between PBE and PBE+U 

(+U = 7eV) is presented for interested readers in the supporting information. The plots show that for Cu 

doped CeO2, Cu d states contribute to the top of the VB mixing with the surface CeO2 states, and the 

spin up peak observed at 0.2 eV above the CeO2 VB is the unpaired electron localized on the Cu dopant, 

while the spin down peak around 3.2 eV is the empty Cu 3d states. The effect of the +U correction on 

the Cu 3d states is to widen the gap between the occupied and empty Cu 3d states, pushing the occupied 

3d state to lower energy. For Zn doped CeO2, the majority of Zn 3d states are located at the bottom of 

the VB with a peak observed around -4.5eV. The main difference in the Cu and Zn 3d contributions to 

the VB is that the Cu states mix over a large energy range from -4.2eV up to 0eV with the majority of 

CeO2 states, while the Zn states mix over a much smaller energy range (-4.5eV to -4.2eV) and thus a 

negligible amount of CeO2 surface states. The relevance of the concentration of metal 3d states in the 

VB and their position is important for surface adsorbate interactions which will be discussed in subse-

quent sections. Both plots have no defect peaks in the CeO2 surface band gap so that the charge com-

pensated vacancy has compensated the oxygen holes.   
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Figure 4: The local geometry for the lowest energy configuration and calculated PEDOS for the charge 

compensating oxygen vacancy on the (a) Cu (U3d = 7 eV) and (b) Zn doped CeO2 (111) surface. The 

black sphere shows the position of the charge compensating vacancy relative to the dopant. The green 

isosurface (0.15 electrons Å-3) shows the unpaired electron on the Cu dopant. The top of the VB is 

aligned to 0eV and the Fermi level is indicated by the dotted line. 

 

The removal of a second oxygen atom from the charge compensated structure creates the active oxy-

gen vacancy, and the formation energy for this oxygen vacancy can be compared to the reduced CeO2 

(111) surface. Similar to the investigation of the lowest energy configuration for the charge compensat-

ing vacancy, all neighboring oxygen species are examined relative to the dopant to determine the lowest 
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energy structure to remove a second oxygen atom from the charge compensated surface. The most fa-

vorable configuration is the two-fold nn-surf oxygen atom on both Cu (irrespective of DFT approach) 

and Zn doped surfaces as shown by the blue sphere in Figure 5. The calculated formation energies for 

the active oxygen vacancy on the doped CeO2 (111) surface are +0.73 eV Cu doping, with +U correction 

and +0.67eV for Zn doping. The energies are lower than the formation energy for an oxygen vacancy on 

the undoped (111) surface indicating that both dopants improve the reducibility and hence the oxygen 

storage capacity of the CeO2 (111) surface by a similar amount. Both the compensated vacancy and the 

active vacancy site on each doped CeO2 (111) surface are on the surface rather than sub-surface, sug-

gesting that these dopants promote oxygen vacancies on the surface rather than in the sub-surface layers 

which is important for oxygenation reactions on the surface. The active vacancy site on both doped sur-

faces is next neighbor oxygen to the compensating vacancy and not bound to the dopant, which creates a 

distorted surface geometry deprived of surface oxygen, and an unusual 5-coordinated Ce cation on the 

surface.  To adjust for the lack of surface oxygen species, a subsurface oxygen atom migrates to the sur-

face layer becoming three-fold coordinated, as indicated by the orange sphere in Figure 5.  The creation 

of the active oxygen vacancy nearest neighbor to the compensating vacancy from the presence of do-

pants on the surface causes drastic geometric changes to the surface which may act as defective sites to 

facilitate surface reactions. Although the removal of surface oxygen species distorts the surface geome-

try, the local structure around the dopant in the surface is little changed, showing that their bonding con-

figurations are unaffected by the creation of surface vacancies. 

The formation of the active oxygen vacancy at the surface releases two electrons that reduce two sur-

face Ce(IV) cations to Ce(III) cations that are shown in Figure 5 by the large green spheres. The spin 

magnetization shows a value of 1 on the Ce cations in the lattice marked by the green spheres, while the 

Bader charges show an increase from 9.6 to 9.9 electrons that is typical for the reduction of the Ce cati-

ons. For Cu-doped CeO2 (111) the two reduced Ce cations are neighboring the vacancy on the surface 
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and the Cu dopant maintains its +2 oxidation state as indicated by the spin density, while for Zn-doped 

CeO2 (111) the preferential sites are one surface Ce cation and a sub-surface Ce cation. The reduction of 

the Ce cations is further shown in the PEDOS plots with the presence of Ce 4f defect levels in the band 

gap. The two peaks in the band gap for Zn-doped CeO2 (111) correspond to the reduced Ce cations in 

two different environments, while in Cu-doped CeO2 (111) a single peak is present due to the symmetry 

of the two reduced Ce cations. The spin magnetization also confirms that the Cu atom contains an un-

paired 3d electron, and the creation of the active vacancy provides a quartet electronic ground state with 

the unpaired Cu 3d and two Ce(III) 4f  electrons. The doublet electronic ground state, in which the spins 

on Cu(II) and on one Ce(III) cation are spin paired is 0.1eV higher in energy, so the high spin solution is 

shown. The Zn-doped CeO2 (111) system is not as complicated as Zn has a 3d10 configuration with all 

electrons being spin paired, and thus the overall ground state is a triplet with two unpaired electrons on 

the reduced Ce(III) cations.  

The calculated PEDOS for the active vacancy for both doped surfaces is also shown in Figure 5. The 

VB is a mixture of Cu/Zn 3d states with the CeO2 O 2p states with a minor contribution from the Ce 4f 

states. Similar to the charge compensated structures, the Cu 3d states extends over a large energy range 

(-4.5eV to 0eV) while the majority of Zn 3d states are concentrated in one peak around -4.5eV. For Cu 

doped CeO2, the occupied spin up peak around 0.2 eV above the VB is the unpaired electron on the Cu 

dopant, while the spin down around 3.1 eV peak is unoccupied. The appearance of occupied Ce 4f states 

peaks in the band gap for both doped surfaces confirms the presence of reduced Ce cations in the sys-

tem. One peak is present for Cu doped CeO2 as the reduced Ce cations are symmetry equivalent, while 

for Zn doped CeO2 there are two Ce 4f peaks in the band gap, each one related to a reduced Ce cation in 

the surface and sub-surface layers. The Ce defect peak closest to the top of the VB corresponds to the 

surface Ce atom, while the higher energy Ce defect corresponds to the sub-surface Ce atom. 
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Figure 5: The local structure and calculated PEDOS for the active vacancy formation on (a) Cu (U = 7 

eV), and (b) Zn doped CeO2 (111). The green spheres indicate the lattice positions of the reduced spe-

cies on both surfaces. The black and blue spheres show the lattice positions of the compensating and 

active oxygen vacancies, respectively, while the orange sphere indicates the lattice position of a three-

fold oxygen species. The red, orange and green lines on the PEDOS plot are the O 2p, Cu 3d, and Ce 4f 

state contributions to the VB and CB, and the top of the VB is aligned to 0eV and the Fermi level is in-

dicated by the black dotted line on the plot. 
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3.4 Hydrogen adsorption on Cu and Zn doped CeO2 (111)  

The adsorption of hydrogen was explored on Cu and Zn doped CeO2 (111) by investigating the inter-

action of the adsorbate on each of the possible oxygen surface sites labelled in Figure 6.  These are iden-

tified as the nearest neighbor surface (nn-surf) oxygen, nearest neighbor sub-surface (nn-sub surf) oxy-

gen, oxygen bonded to the dopant (M-O) and the next nearest neighbor surface oxygen atom (nnn-surf) 

relative to the dopant cation.  

 

Figure 6: The possible surface oxygen adsorption sites on Cu-doped CeO2 (111) for exploring hydrogen 

adsorption are identified as (I) nn-surf, (II) nn-sub surf, (III) M-O and (IV) nnn-surf. The dotted lines 

indicate the edges of the unit cell surface.  

 

The lowest energy configuration for hydrogen adsorption on Cu and Zn doped CeO2 (111) is shown in 

Figure 7. The preferential adsorption site for hydrogen on Cu doped CeO2 is on nn-surf two-fold coor-

dinated oxygen atom not bound to the dopant. On Zn doped CeO2 hydrogen also adsorbs on nn-surf 

two-fold oxygen atom not bound to the Zn dopant. Surface hydroxyls are formed with an O-H bond 
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length of 0.97Å in each case. The calculated hydrogen adsorption energies on doped CeO2 are -1.72 eV 

and -1.68eV (Zn), all relative to 1/2 H2 in the gas phase, which indicate that the adsorption is favorable 

on both surfaces. The calculated H adsorption energy on the undoped surface is -1.26eV indicating that 

the Cu and Zn dopants promote H adsorption on the CeO2 (111) surface.  

The adsorption of hydrogen transfers an electron from the adsorbate to both doped surfaces, reducing 

a next nearest neighboring Ce(IV) cation to Ce(III), as shown by the large green spheres in Figure 7, and 

further confirmed by spin magnetization and Bader analysis. The spin magnetization indicates that the 

Ce cations have a spin of 1 from the unpaired electron, and the Bader values show that the hydrogen at-

om is a proton while the computed charge on the reduced Ce cations charge is 9.9, confirming the elec-

tron transfer process. The spin density plot on the Cu dopant shows that the Cu atom maintains its +2 

oxidation state. 

The PEDOS for hydrogen adsorption on Cu and Zn doped CeO2 is shown in Figure 7. The H 1s peak 

is low in energy around -5eV for both doped surfaces, which mixes with Cu 3d states and close in ener-

gy to the large Zn 3d peak (-4.5eV). There is negligible mixing with the CeO2 surface states. The occu-

pied Cu 3d states are seen to be present across a wide energy range from 0.0eV to -5eV, while for Zn 3d 

state are mainly located in the peak around -4.5eV. Both PEDOS plots show a Ce 4f state in the band 

gap which is associated with the reduced Ce cation formed by the transfer of an electron from the hy-

drogen atom.  

 



23 

 

 

Figure 7: The most stable site and associated PEDOS plot for hydrogen adsorption on (a) Cu (U = 7 

eV), and (b) Zn doped CeO2 (111). The local atomic structure is shown for the H adsorption site with the 

black sphere indicating the position of the compensated vacancy, and the large green spheres show the 

lattice positions of the reduced Ce cations, with the green iso-surface (0.15 electrons Å-3) showing the 

spin density on the Cu dopant. The top of the VB is aligned to 0eV and the Fermi level is indicated by 

the dotted line. 

 

3.5 Dissociative adsorption of methane on Cu and Zn doped CeO2 (111)   

The dissociative adsorption of methane was investigated on Cu and Zn doped CeO2 (111) by examin-

ing possible adsorption structures on the surface in a similar manner to hydrogen adsorption. In all cases 

methane was found to weakly interact with both doped surfaces in a physisorbed state, lying 3Å above 
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the surface as shown in top panels in Figures 8 (a) and (b) for Cu and Zn doped CeO2 (111). This sug-

gests that the CH4 molecule does not dissociate on interaction with the doped surfaces and the molecule 

has to be activated to dissociate.  

The lowest energy configuration for the CH3
* + H dissociation products was investigated by determin-

ing the lowest energy adsorption site for single adsorption of CH3* and using the most stable adsorption 

site for hydrogen adsorption on each surface. The co-adsorption of these two species (CH3
* + H) was 

also investigated to explore and contrast the most stable adsorption sites relative to each other, finding 

that the most stable positions are similar to their single adsorption lowest energy configurations. The 

same lowest energy structure is also found when CH3* is adsorbed after H adsorption. The lowest ener-

gy configurations for the dissociation products are shown in the lower panels of Figures 8(a) and (b) for 

the Cu and Zn doped CeO2 (111). Irrespective of dopant or DFT approach, the H adsorbate prefers to 

adsorb on the two fold active surface oxygen species next to the dopant cation on both surfaces, and the 

subsequent adsorption of the CH3
*species was explored around the lowest energy H site. In all cases, 

adsorbed CH3
* prefers to bind to the three-fold coordinated surface oxygen species next neighbor to the 

Cu dopant, to form a surface methoxy species (CH3-O). On adsorption of the CH3* species, the Cu-O 

bond is broken to accommodate CH3-O formation, and a two-fold coordinated surface oxygen atom is 

formed from the three-fold species. This oxygen is bonded to two Ce cations close to the dopant and 

across from the hydroxyl species.  When we examine other adsorption sites for both H and CH3, particu-

larly in which one or both adsorbates bind to other three-fold coordinated oxygen surface species, the 

adsorption energies can be up to 1.2 eV higher than those for the structures in Figure 8. Thus, adsorption 

of H and/or CH3 is favored at the 2-fold oxygen formed by the presence of the lower valent dopant and 

compensating oxygen vacancy. 

The methoxy species on both surfaces have similar bond lengths; the C-H distances are 1.10Å similar 

to the CH4 molecule, the O-C surface bond is 1.42Å and the H-O bond is 0.97Å for adsorbates on both 
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surfaces. The preferential adsorption of dissociation products occurring at the dopant site indicates that 

the dissociation of methane is localized around the dopant site. The dopant facilitates the dissociation 

due to the local structural changes, originating from the charge compensating vacancy being next neigh-

bor on the surface and the creation of the reactive two fold oxygen surface species. The calculated ad-

sorption energies for the dissociated species are -1.54 eV for Cu doped and -2.05eV for Zn doped CeO2 

(111), which are significantly lower in energy than adsorption energy of the CH3
*+H species on the pure 

surface (-1.14eV). The negative adsorption energies indicate that adsorption and dissociation is favored 

on both doped surfaces. The Cu and Zn doping therefore promotes methane dissociation with a thermo-

dynamic drive to form the dissociation products being greater, in particular on Zn-doped CeO2 (111). 
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Figure 8: The local atomic structures for the dissociative adsorption of methane on (a) Cu and (b) Zn 

doped CeO2 (111) shown along the (i) c and (ii) b vectors. The top panel shows the lowest energy con-

figuration for CH4, while the bottom panel shows the lowest energy configuration for CH3+H on both 

doped structures. The large green spheres show the location of the reduced Ce cations on the surface.   

 

The calculated ground state electronic structure for the dissociative adsorption of methane on Cu and 

Zn doped CeO2 (111) was investigated by spin magnetization, Bader analysis and PEDOS plots which 
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are shown in Figure 9. As the methane molecule interacts weakly with both doped surfaces, the electron-

ic structures for the surfaces remain unchanged to that seen previously for the compensated structures. 

This is reflected in the PEDOS plot shown in Figure 9(a)(i), as the C 2p and H 1s contributions to the 

CH4 molecule overlap around -3.2eV indicating a σ-bonding interaction, and the Cu 3d states are similar 

to those for Cu-doped CeO2. The spin up peak at the VB edge is for the unpaired Cu 3d electron which 

is shown by the green spin density around the Cu dopant. There are no defect peaks in the band gap for 

CeO2 (111) suggesting that no surface defects are present. For Zn-doped CeO2 (111), the interaction of 

methane is also weak and does not change the surface electronic structure. The PEDOS for CH4 on the 

Zn-doped surface shown in Figure 9(b)(i) is similar to CH4 on the Cu-doped surface. The Zn 3d PEDOS 

is similar to the charge compensated surface (Figure 4(b)), and there are no observable defect peaks in 

the CeO2 (111) PEDOS.  

On dissociation and adsorption of the CH3
*+H species, the changes to the electronic structure are seen 

from the appearance of reduced Ce surface cations (green spheres) and also seen in the PEDOS plots. 

For Cu-doped CeO2 (111), the spin magnetization and Bader values indicate that two surface Ce(IV) 

cations become reduced to Ce(III) cations next to the H adsorbate as shown by the large green spheres 

in Figure 8, while the Cu dopant maintains a +2 oxidation state as shown by the spin density around the 

Cu atom. Investigation of the system magnetization confirms that both reduced Ce cations have a spin 

of one, and the Cu dopant has an unpaired electron with a spin of 1. The Bader values indicate that the 

H adsorbate loses electron density becoming a proton to reduce one of the Ce surface cations, while the 

C atom from the methoxy species loses 0.8 electrons, and the Cu dopant does not lose any electron den-

sity. The spin magnetization and Bader values suggest that the Ce cations are reduced after adsorption of 

the CH3* and H species. The change in the electronic structure for the dissociation products on Zn-

doped CeO2 (111) is not as complicated as Cu-doped CeO2 (111). The spin magnetization indicates that 

two surface Ce cations are reduced (both have a spin of one) from the CH3
* and H adsorbates donating 
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electron density to the nearest neighbor surface Ce cations that are shown by the large green spheres in 

Figure 8. The reduction of Ce cations is supported by Bader analysis, with an increase in charge for the 

Ce cations and a decrease in charge for the CH3
*, H adsorbates.  

The calculated PEDOS plots for the adsorption of CH3
*+H on Cu and Zn doped CeO2 (111) are shown 

in Figure 9(a) and (b) (ii). The contributions from the 3H atoms for the CH3 adsorbate and the H adsorb-

ate on the surface are presented separately in the PEDOS to show the differences in their electronic 

structures. The changes to the C 2p and H 1s PEDOS from CH4 adsorption to CH3
*+H dissociation are 

seen as these states shift to lower energy, upon interaction with the doped surfaces.  For the C and H3 

PEDOS of the CH3
* adsorbate, the peak near the top of the VB is the position of an occupied σ-orbital 

that is present from the formation of the C-O covalent bond in the CH3-O moiety, and lies higher in en-

ergy on the Zn-doped surface, than on the Cu-doped surface. The H 1s peak for the H adsorbate on the 

Zn-doped surface is lower in energy than the corresponding peak on the Cu-doped surface indicating 

that the H species is more strongly stabilised on Zn-doped CeO2 than on Cu-doped CeO2. The stabiliza-

tion of the dissociation products is reflected in the calculated adsorption energies which is more favora-

ble on Zn doped CeO2 than Cu-doped CeO2. This stabilisation may originate from the interaction of a 

large portion of the Zn 3d states with the C 2p and H 1s states as seen in Figure 9 (b)(ii), while this in-

teraction with the Cu 3d states does not occur (Figure  9(a)(ii)). The reduction of the Ce surface cations 

on both surfaces is reflected in the PEDOS plots from the appearance of Ce 4f peaks around 1eV above 

the VB.  
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Figure 9: The calculated PEDOS on (a) Cu and (b) Zn- doped CeO2 (111) for (i) CH4 and (ii) CH3 + H. 

The blue, red, orange and green lines are the s, p, d, and f states with the top of the VB aligned to 0eV 

and the Fermi level is indicated by the dotted line.  

 

 

 

 

 



30 

 

3.6 Activation energies for methane dissociation on Cu and Zn doped CeO2 (111)  

  

The kinetic barriers for CH4 activation on the Cu and Zn doped CeO2 (111) surfaces were deter-

mined by the CI-NEB method, using the lowest energy configurations for the CH4 adsorbate and the 

CH3*+H dissociation products to anchor the starting and end points of the calculation. The transition 

state is determined as a maximum point on the potential energy surface between these two points, giving 

the activation energy to dissociate methane on the doped surfaces. The calculated structures for the tran-

sition states on Cu- and Zn-doped CeO2 (111) surfaces are shown in Figure 10. For both doped surfaces, 

the transition state shows that the abstraction of an H atom from the CH4 molecule occurs to form a me-

thyl group (CH3), and a hydroxyl O-H surface species. On both the Cu-CeO2 and Zn-CeO2 surfaces, the 

methyl group lies in a planar configuration above the surface in the gas phase. The geometry of the me-

thyl radicals for both transition states facilitates the formation of a C-O bond in the final methoxide sur-

face species upon dissociation as the C atom is able to bond with the surface oxygen atoms.  

The spin magnetization of the transition state was also determined and supported by Bader anal-

ysis. For both Cu and Zn-doped CeO2, the methyl group remains in the gas phase with an unpaired elec-

tron in the σ-SOMO orbital as shown by the iso-surface in Figure 10(b), while upon adsorption of the H 

atom, an electron is transferred to the neighboring Ce(IV) atom reducing it to Ce(III), which is indicated 

by the large green sphere. The overall spin for this transition state is a triplet, arising from the unpaired 

electron on the methyl species, and the reduction of a surface Ce cation by the adsorbed H atom as 

shown from the spin density plot in Figure 10 (c). The Cu dopant remains in a +2 oxidation state for 

both the end points and in the transition state structure, which is determined from the Bader charges and 

calculated spin magnetization. However, this is not reflected in the spin density plot of the transition 

state as the unpaired electron on the Cu dopant has an opposite spin to the methyl group and Ce(III) cat-

ion.  
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 The calculated activation energies on Cu-CeO2 and Zn-CeO2 (111) surfaces are 1.23eV and 

0.85eV. The energies indicate that the Cu and Zn doping improves the activation of methane on CeO2 

(111) as the computed activation energy is lower than the undoped surface (1.45eV). For Cu-CeO2, the 

activation energy is an improvement over the undoped surface, however it is still significantly higher by 

0.38eV than for Zn-doped CeO2, indicating that doping the CeO2 (111) surface with Zn will enhance 

methane activation at lower temperatures. There is an additional energy requirement to the activation 

process on Cu-CeO2 in order to break the Cu-O bond in the final methoxide state which is an energeti-

cally costly step that is not seen for Zn-CeO2. There is a lengthening of two Cu-O bonds in the transition 

state in the z-plane, and one of these is broken in the final dissociated state, since the CH3 adsorbate is 

bonded to the resulting two fold surface oxygen, Figure 10(a)(iii). The breaking of this Cu-O bond on 

forming the dissociated adsorption structure adds an extra energy contribution to the activation energy 

making it higher when compared to the activation energy for Zn-CeO2. The lower activation energy on 

Zn-CeO2 arises from the local geometry around the dopant being little changed during the C-H bond 

breaking with no Zn-O bonds being broken or formed.  
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Figure 10: The calculated structures to determine the activation energy on (a) Cu doped CeO2 (111) with 

a U=7 correction applied to the Cu 3d states, and (b) Zn doped CeO2 (111) showing the (i) CH4 adsorp-

tion, (ii) computed transition state and (iii) the dissociated CH3*+H adsorption products. The large 

green spheres show the location of the Ce(III) cations, while the green isosurface (0.15 electrons Å-3) 

shows the unpaired electron on Cu dopant and methyl group. 
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4. Discussion  

Charge compensation, active oxygen vacancy formation and dissociative adsorption of methane 

were explored on Cu and Zn doped CeO2 (111), finding distinct differences in the behavior of the 

dopants and some influence of the DFT approach applied to describe Cu 3d states. The negative 

formation energies for the first oxygen vacancy in the Cu and Zn doping of the CeO2 (111) surface 

provides evidence that a charge compensating oxygen vacancy is required to correctly describe the 

ground state electronic structure of these surfaces,22 which has been previously neglected in earlier 

studies of methane activation on doped ceria, e.g. refs.21, 23 The formation of charge compensating 

oxygen vacancies in technologically important materials is well-known, e.g. Y-doped ZrO2 (YSZ, 

used in fuel cells) and Al-doped TiO2.
70-72 The removal of a second oxygen atom, that is, the active 

oxygen vacancy, is endothermic and it is this energy that is compared to the oxygen vacancy for-

mation energy of the undoped CeO2 (111) surface. Oxygen vacancy formation is enhanced by the 

presence of the Cu and Zn dopants. We examined the adsorption of H and CH3+H on the doped sur-

faces; the calculated adsorption energies are much smaller than calculated for Zn-CeO2 on the non-

compensated structures in previous works.23 The large binding energies on the non-compensated Zn-

CeO2 (111) surface are not surprising as the adsorbates are electron donating species and over-bind 

when hole states are present on the surface oxygen atoms. The over-binding of these adsorbates and 

the use of negative oxygen vacancy formation energies in previous works brings into question the 

validity of the developed trends, and perhaps a reevaluation is needed.23 The calculated adsorption 

energies in this work on the compensated surfaces and the calculated formation energies for the ac-

tive vacancies are more appropriate since the ground state electronic structure is correctly described 

and the calculated energies fit better with the energies of higher valence dopants in CeO2.  

The active oxygen vacancy formation energies and the adsorption energy for H on both Cu and Zn 

doped CeO2 are similar; however the calculated energy for the adsorption of the CH3 species on the 
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surface for the lowest energy configuration of CH3+H is very different. The co-adsorption of these 

species on the Zn-CeO2 (111) surface is greatly stabilized from the single adsorption of H on the sur-

face by 0.37eV which can be attributed to the acid-base interaction.73,75 The pre-adsorption of the H 

species is an acid which donates charge to the surface and the subsequent adsorption of CH3 is great-

ly stabilized as a base when compared to single adsorption of either H or CH3.  The calculated ad-

sorption energy for CH3*+H is destabilized by 0.18 eV compared to the adsorption energy of H.  

The H adsorbate and Cu dopant act as acids on the surface so that the surface becomes too electron 

rich to stabilize the subsequent adsorption of the CH3 species as a base interaction, and results in the 

weaker, although still favorable, overall adsorption energy. The transition state structure for the Cu-

CeO2 (111) surface is the methyl group in the gas phase above the surface to facilitate the formation 

of the H3C-O bond in the final state. Although the structure is similar to Zn-CeO2, the activation en-

ergy is still 0.38eV higher than Zn-CeO2 indicating that Zn doped CeO2 will break the C-H bond at 

lower temperatures than the Cu doped CeO2 surface. The large energy requirement for Cu-CeO2 is 

due to the Cu dopant having a four coordinated square planar geometry when only a H atom is ad-

sorbed, and further adsorption of the CH3* species breaks the surface Cu-O bond to form a two co-

ordinated O surface species with the methyl group. This is not seen for Zn-CeO2, as the Zn dopant 

lies in the sub-surface layer with no surface Zn-O bonds, and therefore there is no additional energy 

requirements for breaking of M-O bonds to allow adsorption of the final methyl radical.  

Low valence, aliovalent and high valence transition metal dopants in metal oxides, as well as the ac-

id-base interaction for adsorbates on their surfaces has been discussed in the literature to predict the 

properties and reactions that can take place.73, 74 The comparison of the behavior between the Cu and 

Zn dopants in this study reveals a further complexity to the interaction and adsorption of atomic and 

molecular species on transition metal doped CeO2. The coordination environment of the dopant spe-

cies plays a role in the reaction thermodynamics and kinetics. Both dopant species are low coordi-
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nated as Zn adopts a square pyramidal geometry in the sub surface layer, while Cu has a square pla-

nar geometry that bonds with surface oxygen atoms. The Zn dopant coordination geometry facili-

tates low coordinated surface oxygens as active sites for adsorbate interactions which appear to af-

fect the thermodynamics and kinetics. Careful consideration of the dopant coordination is therefore 

warranted and must be understood when designing transition metal doped surfaces for different re-

actions. This may be restricted to transition metal doping in CeO2 or for methane activation; howev-

er further comparisons between dopants with different coordination and for different reaction 

schemes may support the hypothesis. For this study, the smaller Zn cation is a superior dopant over 

the Cu dopant as the Zn dopant in the CeO2 surface enhances the reaction thermodynamics and ki-

netics over the undoped surface by causing surface distortions to facilitate dissociative adsorption of 

methane. 

5. Conclusion 

The formation of oxygen vacancies and dissociative adsorption of methane on Cu and Zn doped 

CeO2 (111) surfaces was investigated using density functional theory calculations; in addition, there 

is a requirement for the +U correction on the 3d states of Cu. The calculations showed that the re-

moval of a first oxygen atom from the divalent doped CeO2 (111) surface results in a negative for-

mation energy which indicates that a charge compensating mechanism is required to correctly de-

scribe the ground state electronic configuration of these doped surfaces, which has been neglected in 

the current literature. The removal of a second oxygen atom forms the active vacancy. Compared to 

the oxygen vacancy formation energy of the undoped CeO2 (111) surface, the Cu and Zn doping en-

hances oxygen vacancy formation. 

The adsorption of H was investigated on the Cu and Zn doped CeO2 (111) surfaces, and we find that 

this interaction is more favorable than on the undoped surface. On both doped surfaces, the adsorp-
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tion of the H atom reduces one Ce(IV) cation to Ce(III) with no change in the Cu and Zn oxidation 

states.  

Methane is weakly interacting on the Cu and Zn doped surfaces, being phyisorbed around 3Å above 

the surface. For dissociative adsorption, O-CH3 and OH surface species are formed. The adsorption 

of CH3*+H is more stable on the Zn doped surface than on the Cu doped surface, but both doped 

surfaces promote dissociative adsorption of methane over the undoped surface. On Zn doped CeO2 

an acid-base interaction gives enhanced stability, while stability of the co-adsorption becomes weak-

er on Cu-doped CeO2. This can be related to the activation energies, as Cu-CeO2 does not lower the 

dissociation barrier compared to the undoped CeO2 surface as significantly as Zn-CeO2, which is 

proposed to greatly promote dissociation of methane at lower reaction temperatures with faster reac-

tion kinetics. The coordination environment of the dopant plays a leading role in this difference be-

tween Cu-CeO2 and Zn-CeO2.  
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