15,934 research outputs found

    On the instability of Reissner-Nordstrom black holes in de Sitter backgrounds

    Full text link
    Recent numerical investigations have uncovered a surprising result: Reissner-Nordstrom-de Sitter black holes are unstable for spacetime dimensions larger than 6. Here we prove the existence of such instability analytically, and we compute the timescale in the near-extremal limit. We find very good agreement with the previous numerical results. Our results may me helpful in shedding some light on the nature of the instability.Comment: Published in Phys.Rev.

    Perturbations of Schwarzschild black holes in Dynamical Chern-Simons modified gravity

    Full text link
    Dynamical Chern-Simons (DCS) modified gravity is an attractive, yet relatively unexplored, candidate to an alternative theory of gravity. The DCS correction couples a dynamical scalar field to the gravitational field. In this framework, we analyze the perturbation formalism and stability properties of spherically symmetric black holes. Assuming that no background scalar field is present, gravitational perturbations with polar and axial parities decouple. We find no effect of the Chern-Simons coupling on the polar sector, while axial perturbations couple to the Chern-Simons scalar field. The axial sector can develop strong instabilities if the coupling parameter beta, associated to the dynamical coupling of the scalar field, is small enough; this yields a constraint on beta which is much stronger than the constraints previously known in the literature.Comment: 9 pages, 1 figure. Minor changes to match version accepted by Phys. Rev.

    Visco-elastic regularization and strain softening

    Get PDF
    In this paper it is intended to verify the capacity of regularization of the numerical solution of an elasto-plastic problem with linear strain softening. The finite element method with a displacement approach is used. Drucker-Prager yield criteria is considered. The radial return method is used for the integration of the elasto-plastic constitutive relations. An elastovisco- plastic scheme is used to regularize the numerical solution. Two constitutive laws have been developed and implemented in a FE-program, the first represent the radial return method applied to Drucker-Prager yield criteria and the second is a time integration procedure for the Maxwell visco-elastic model. Attention is paid to finite deformations. An associative plastic flow is considered in the Drucker-Prager elasto-plastic model. The algorithms are tested in two problems with softening. Figures showing the capability of the algorithms to regularize the solution are presented

    On the gravitational stability of D1-D5-P black holes

    Full text link
    We examine the stability of the nonextremal D1-D5-P black hole solutions. In particular, we look for the appearance of a superradiant instability for the spinning black holes but we find no evidence of such an instability. We compare this situation with that for the smooth soliton geometries, which were recently observed to suffer from an ergoregion instability, and consider the implications for the fuzzball proposal.Comment: 18 pages, 3 figures. Minor comments added to match published versio

    Testing strong gravity with gravitational waves and Love numbers

    Get PDF
    The LIGO observation of GW150914 has inaugurated the gravitational-wave astronomy era and the possibility of testing gravity in extreme regimes. While distorted black holes are the most convincing sources of gravitational waves, similar signals might be produced also by other compact objects. In particular, we discuss what the gravitational-wave ringdown could tell us about the nature of the emitting object, and how measurements of the tidal Love numbers could help us in understanding the internal structure of compact dark objects

    Late-Time Tails of Wave Propagation in Higher Dimensional Spacetimes

    Full text link
    We study the late-time tails appearing in the propagation of massless fields (scalar, electromagnetic and gravitational) in the vicinities of a D-dimensional Schwarzschild black hole. We find that at late times the fields always exhibit a power-law falloff, but the power-law is highly sensitive to the dimensionality of the spacetime. Accordingly, for odd D>3 we find that the field behaves as t^[-(2l+D-2)] at late times, where l is the angular index determining the angular dependence of the field. This behavior is entirely due to D being odd, it does not depend on the presence of a black hole in the spacetime. Indeed this tails is already present in the flat space Green's function. On the other hand, for even D>4 the field decays as t^[-(2l+3D-8)], and this time there is no contribution from the flat background. This power-law is entirely due to the presence of the black hole. The D=4 case is special and exhibits, as is well known, the t^[-(2l+3)] behavior. In the extra dimensional scenario for our Universe, our results are strictly correct if the extra dimensions are infinite, but also give a good description of the late time behaviour of any field if the large extra dimensions are large enough.Comment: 6 pages, 3 figures, RevTeX4. Version to appear in Rapid Communications of Physical Review

    Anisotropic fluid inside a relativistic star

    Full text link
    An anisotropic fluid with variable energy density and negative pressure is proposed, both outside and inside stars. The gravitational field is constant everywhere in free space (if we neglect the local contributions) and its value is of the order of g=108cm/s2g = 10^{-8} cm/s^{2}, in accordance with MOND model. With ρ, p1/r\rho,~ p \propto 1/r, the acceleration is also constant inside stars but the value is different from one star to another and depends on their mass MM and radius RR. In spite of the fact that the spacetime is of Rindler type and curved even far from a local mass, the active gravitational energy on the horizon is 1/4g-1/4g, as for the flat Rindler space, excepting the negative sign.Comment: 9 pages, refs added, new chapter added, no figure

    Quasinormal modes for the SdS black hole : an analytical approximation scheme

    Full text link
    Quasinormal modes for scalar field perturbations of a Schwarzschild-de Sitter (SdS) black hole are investigated. An analytical approximation is proposed for the problem. The quasinormal modes are evaluated for this approximate model in the limit when black hole mass is much smaller than the radius of curvature of the spacetime. The model mirrors some striking features observed in numerical studies of time behaviour of scalar perturbations of the SdS black hole. In particular, it shows the presence of two sets of modes relevant at two different time scales, proportional to the surface gravities of the black hole and cosmological horizons respectively. These quasinormal modes are not complete - another feature observed in numerical studies. Refinements of this model to yield more accurate quantitative agreement with numerical studies are discussed. Further investigations of this model are outlined, which would provide a valuable insight into time behaviour of perturbations in the SdS spacetime.Comment: 12 pages, revtex, refs added and discussion expanded, version to appear in Phys. Rev.

    Gravitational perturbation of the BTZ black hole induced by test particles and weak cosmic censorship in AdS spacetime

    Full text link
    We analyze the gravitational perturbations induced by particles falling into a three dimensional, asymptotically AdS black hole geometry. More specifically, we solve the linearized perturbation equations obtained from the geodesic motion of a ring-like distribution of test particles in the BTZ background. This setup ensures that the U(1) symmetry of the background is preserved. The non-asymptotic flatness of the background raises difficulties in attributing the significance of energy and angular momentum to the conserved quantities of the test particles. This issue is well known but, to the best of our knowledge, has never been addressed in the literature. We confirm that the naive expressions for energy and angular momentum are the correct definitions. Finally, we put an asymptotically AdS version of the weak cosmic censorship to a test: by attempting to overspin the BTZ black hole with test particles it is found that the black hole cannot be spun-up past its extremal limit.Comment: 6 pages, no figures; v2: minor corrections and reference added to match published versio

    Scalar field perturbation on six-dimensional ultra-spinning black holes

    Full text link
    We have studied the scalar field perturbations on six-dimensional ultra-spinning black holes. We have numerically calculated the quasinormal modes of rotating black holes. Our results suggest that such perturbations are stable.Comment: 8 pages, 6 figures; v2:typo corrected; v3:ref. corrected; v4:revise
    corecore