7,541 research outputs found

    Gravitational quasinormal radiation of higher-dimensional black holes

    Full text link
    We find the gravitational resonance (quasinormal) modes of the higher dimensional Schwarzschild and Reissner-Nordstrem black holes. The effect on the quasinormal behavior due to the presence of the λ\lambda term is investigated. The QN spectrum is totally different for different signs of λ\lambda. In more than four dimensions there excited three types of gravitational modes: scalar, vector, and tensor. They produce three different quasinormal spectra, thus the isospectrality between scalar and vector perturbations, which takes place for D=4 Schwarzschild and Schwarzschild-de-Sitter black holes, is broken in higher dimensions. That is the scalar-type gravitational perturbations, connected with deformations of the black hole horizon, which damp most slowly and therefore dominate during late time of the black hole ringing.Comment: 13 pages, 2 figures, several references are adde

    Decay of charged scalar field around a black hole: quasinormal modes of R-N, R-N-AdS and dilaton black holes

    Full text link
    It is well known that the charged scalar perturbations of the Reissner-Nordstrom metric will decay slower at very late times than the neutral ones, thereby dominating in the late time signal. We show that at the stage of quasinormal ringing, on the contrary, the neutral perturbations will decay slower for RN, RNAdS and dilaton black holes. The QN frequencies of the nearly extreme RN black hole have the same imaginary parts (damping times) for charged and neutral perturbations. An explanation of this fact is not clear but, possibly, is connected with the Choptuik scaling.Comment: 10 pages, LaTeX, 4 figures, considerable changes made and wrong interpretation of computations correcte

    Quasinormal modes of d-dimensional spherical black holes with a near extreme cosmological constant

    Full text link
    We derive an expression for the quasinormal modes of scalar perturbations in near extreme d-dimensional Schwarzschild-de Sitter and Reissner-Nordstrom-de Sitter black holes. We show that, in the near extreme limit, the dynamics of the scalar field is characterized by a Poschl-Teller effective potential. The results are qualitatively independent of the spacetime dimension and field mass.Comment: 5 pages, REVTeX4, version to be published in Physical Review

    BPS black holes, the Hesse potential, and the topological string

    Full text link
    The Hesse potential is constructed for a class of four-dimensional N=2 supersymmetric effective actions with S- and T-duality by performing the relevant Legendre transform by iteration. It is a function of fields that transform under duality according to an arithmetic subgroup of the classical dualities reflecting the monodromies of the underlying string compactification. These transformations are not subject to corrections, unlike the transformations of the fields that appear in the effective action which are affected by the presence of higher-derivative couplings. The class of actions that are considered includes those of the FHSV and the STU model. We also consider heterotic N=4 supersymmetric compactifications. The Hesse potential, which is equal to the free energy function for BPS black holes, is manifestly duality invariant. Generically it can be expanded in terms of powers of the modulus that represents the inverse topological string coupling constant, gsg_s, and its complex conjugate. The terms depending holomorphically on gsg_s are expected to correspond to the topological string partition function and this expectation is explicitly verified in two cases. Terms proportional to mixed powers of gsg_s and gˉs\bar g_s are in principle present.Comment: 28 pages, LaTeX, added comment

    Numerical analysis of quasinormal modes in nearly extremal Schwarzschild-de Sitter spacetimes

    Get PDF
    We calculate high-order quasinormal modes with large imaginary frequencies for electromagnetic and gravitational perturbations in nearly extremal Schwarzschild-de Sitter spacetimes. Our results show that for low-order quasinormal modes, the analytical approximation formula in the extremal limit derived by Cardoso and Lemos is a quite good approximation for the quasinormal frequencies as long as the model parameter r1Îș1r_1\kappa_1 is small enough, where r1r_1 and Îș1\kappa_1 are the black hole horizon radius and the surface gravity, respectively. For high-order quasinormal modes, to which corresponds quasinormal frequencies with large imaginary parts, on the other hand, this formula becomes inaccurate even for small values of r1Îș1r_1\kappa_1. We also find that the real parts of the quasinormal frequencies have oscillating behaviors in the limit of highly damped modes, which are similar to those observed in the case of a Reissner-Nordstr{\" o}m black hole. The amplitude of oscillating Re(ω){\rm Re(\omega)} as a function of Im(ω){\rm Im}(\omega) approaches a non-zero constant value for gravitational perturbations and zero for electromagnetic perturbations in the limit of highly damped modes, where ω\omega denotes the quasinormal frequency. This means that for gravitational perturbations, the real part of quasinormal modes of the nearly extremal Schwarzschild-de Sitter spacetime appears not to approach any constant value in the limit of highly damped modes. On the other hand, for electromagnetic perturbations, the real part of frequency seems to go to zero in the limit.Comment: 9 pages, 7 figures, to appear in Physical Review

    Quasinormal Modes and Black Hole Quantum Mechanics in 2+1 Dimensions

    Full text link
    We explore the relationship between classical quasinormal mode frequencies and black hole quantum mechanics in 2+1 dimensions. Following a suggestion of Hod, we identify the real part of the quasinormal frequencies with the fundamental quanta of black hole mass and angular momentum. We find that this identification leads to the correct quantum behavior of the asymptotic symmetry algebra, and thus of the dual conformal field theory. Finally, we suggest a further connection between quasinormal mode frequencies and the spectrum of a set of nearly degenerate ground states whose multiplicity may be responsible for the Bekenstein-Hawking entropy.Comment: 8 pages, LaTeX; references added and corrected, introduction and conclusion slightly expande

    Gravitational Larmor formula in higher dimensions

    Get PDF
    The Larmor formula for scalar and gravitational radiation from a pointlike particle is derived in any even higher-dimensional flat spacetime. General expressions for the field in the wave zone and the energy flux are obtained in closed form. The explicit results in four and six dimensions are used to illustrate the effect of extra dimensions on linear and uniform circular motion. Prospects for detection of bulk gravitational radiation are briefly discussed.Comment: 5 pages, no figure

    Quasinormal modes of Schwarzschild black holes in four and higher dimensions

    Full text link
    We make a thorough investigation of the asymptotic quasinormal modes of the four and five-dimensional Schwarzschild black hole for scalar, electromagnetic and gravitational perturbations. Our numerical results give full support to all the analytical predictions by Motl and Neitzke, for the leading term. We also compute the first order corrections analytically, by extending to higher dimensions, previous work of Musiri and Siopsis, and find excellent agreement with the numerical results. For generic spacetime dimension number D the first-order corrections go as 1n(D−3)/(D−2)\frac{1}{n^{(D-3)/(D-2)}}. This means that there is a more rapid convergence to the asymptotic value for the five dimensional case than for the four dimensional case, as we also show numerically.Comment: 12 pages, 5 figures, RevTeX4. v2. Typos corrected, references adde

    Gravitational Radiation from the radial infall of highly relativistic point particles into Kerr black holes

    Full text link
    In this paper, we consider the gravitational radiation generated by the collision of highly relativistic particles with rotating Kerr black holes. We use the Sasaki-Nakamura formalism to compute the waveform, energy spectra and total energy radiated during this process. We show that the gravitational spectrum for high-energy collisions has definite characteristic universal features, which are independent of the spin of the colliding objects. We also discuss possible connections between these results and the black hole-black hole collision at the speed of light process. With these results at hand, we predict that during the high speed collision of a non-rotating hole with a rotating one, about 35% of the total energy can get converted into gravitational waves. Thus, if one is able to produce black holes at the Large Hadron Collider, as much as 35% of the partons' energy should be emitted during the so called balding phase. This energy will be missing, since we don't have gravitational wave detectors able to measure such amplitudes. The collision at the speed of light between one rotating black hole and a non-rotating one or two rotating black holes turns out to be the most efficient gravitational wave generator in the Universe.Comment: 15 pages, REVTEX4. Some comments and references adde

    Area Spectrum of Extremal Reissner-Nordstr\"om Black Holes from Quasi-normal Modes

    Full text link
    Using the quasi-normal modes frequency of extremal Reissner-Nordstr\"om black holes, we obtain area spectrum for these type of black holes. We show that the area and entropy black hole horizon are equally spaced. Our results for the spacing of the area spectrum differ from that of schwarzschild black holes.Comment: 6 pages, no figure, accepted for publication in Phys. Rev.
    • 

    corecore