11,227 research outputs found

    BPS Action and Superpotential for Heterotic String Compactifications with Fluxes

    Full text link
    We consider N =1 compactifications to four dimensions of heterotic string theory in the presence of fluxes. We show that up to order O(\alpha'^2) the associated action can be written as a sum of squares of BPS-like quantities. In this way we prove that the equations of motion are solved by backgrounds which fulfill the supersymmetry conditions and the Bianchi identities. We also argue for the expression of the related superpotential and discuss the radial modulus stabilization for a class of examples.Comment: LaTeX, 28 pages. Minor changes, one more reference added. Final version to appear on JHE

    Heterotic String Theory on non-Kaehler Manifolds with H-Flux and Gaugino Condensate

    Full text link
    We discuss compactifications of heterotic string theory to four dimensions in the presence of H-fluxes, which deform the geometry of the internal manifold, and a gaugino condensate which breaks supersymmetry. We focus on the compensation of the two effects in order to obtain vacua with zero cosmological constant and we comment on the effective superpotential describing these vacua.Comment: 6 page

    Matched-filtering and parameter estimation of ringdown waveforms

    Get PDF
    Using recent results from numerical relativity simulations of non-spinning binary black hole mergers we revisit the problem of detecting ringdown waveforms and of estimating the source parameters, considering both LISA and Earth-based interferometers. We find that Advanced LIGO and EGO could detect intermediate-mass black holes of mass up to about 1000 solar masses out to a luminosity distance of a few Gpc. For typical multipolar energy distributions, we show that the single-mode ringdown templates presently used for ringdown searches in the LIGO data stream can produce a significant event loss (> 10% for all detectors in a large interval of black hole masses) and very large parameter estimation errors on the black hole's mass and spin. We estimate that more than 10^6 templates would be needed for a single-stage multi-mode search. Therefore, we recommend a "two stage" search to save on computational costs: single-mode templates can be used for detection, but multi-mode templates or Prony methods should be used to estimate parameters once a detection has been made. We update estimates of the critical signal-to-noise ratio required to test the hypothesis that two or more modes are present in the signal and to resolve their frequencies, showing that second-generation Earth-based detectors and LISA have the potential to perform no-hair tests.Comment: 19 pages, 9 figures, matches version in press in PR

    Simultaneous occurrence of sliding and crossing limit cycles in piecewise linear planar vector fields

    Get PDF
    In the present study we consider planar piecewise linear vector fields with two zones separated by the straight line x=0x=0. Our goal is to study the existence of simultaneous crossing and sliding limit cycles for such a class of vector fields. First, we provide a canonical form for these systems assuming that each linear system has center, a real one for y<0y<0 and a virtual one for y>0y>0, and such that the real center is a global center. Then, working with a first order piecewise linear perturbation we obtain piecewise linear differential systems with three crossing limit cycles. Second, we see that a sliding cycle can be detected after a second order piecewise linear perturbation. Finally, imposing the existence of a sliding limit cycle we prove that only one adittional crossing limit cycle can appear. Furthermore, we also characterize the stability of the higher amplitude limit cycle and of the infinity. The main techniques used in our proofs are the Melnikov method, the Extended Chebyshev systems with positive accuracy, and the Bendixson transformation.Comment: 24 pages, 7 figure

    Entropy function for rotating extremal black holes in very special geometry

    Get PDF
    We use the relation between extremal black hole solutions in five- and in four-dimensional N=2 supergravity theories with cubic prepotentials to define the entropy function for extremal black holes with one angular momentum in five dimensions. We construct two types of solutions to the associated attractor equations.Comment: 15 pages, minor change

    Truncated states obtained by iteration

    Full text link
    Quantum states of the electromagnetic field are of considerable importance, finding potential application in various areas of physics, as diverse as solid state physics, quantum communication and cosmology. In this paper we introduce the concept of truncated states obtained via iterative processes (TSI) and study its statistical features, making an analogy with dynamical systems theory (DST). As a specific example, we have studied TSI for the doubling and the logistic functions, which are standard functions in studying chaos. TSI for both the doubling and logistic functions exhibit certain similar patterns when their statistical features are compared from the point of view of DST. A general method to engineer TSI in the running-wave domain is employed, which includes the errors due to the nonidealities of detectors and photocounts.Comment: 10 pages, 22 figure

    First-order flow equations for extremal black holes in very special geometry

    Full text link
    We construct interpolating solutions describing single-center static extremal non-supersymmetric black holes in four-dimensional N=2 supergravity theories with cubic prepotentials. To this end, we derive and solve first-order flow equations for rotating electrically charged extremal black holes in a Taub-NUT geometry in five dimensions. We then use the connection between five- and four-dimensional extremal black holes to obtain four-dimensional flow equations and we give the corresponding solutions.Comment: 21 pages. v2: Summary section adde

    BPS black holes, the Hesse potential, and the topological string

    Full text link
    The Hesse potential is constructed for a class of four-dimensional N=2 supersymmetric effective actions with S- and T-duality by performing the relevant Legendre transform by iteration. It is a function of fields that transform under duality according to an arithmetic subgroup of the classical dualities reflecting the monodromies of the underlying string compactification. These transformations are not subject to corrections, unlike the transformations of the fields that appear in the effective action which are affected by the presence of higher-derivative couplings. The class of actions that are considered includes those of the FHSV and the STU model. We also consider heterotic N=4 supersymmetric compactifications. The Hesse potential, which is equal to the free energy function for BPS black holes, is manifestly duality invariant. Generically it can be expanded in terms of powers of the modulus that represents the inverse topological string coupling constant, gsg_s, and its complex conjugate. The terms depending holomorphically on gsg_s are expected to correspond to the topological string partition function and this expectation is explicitly verified in two cases. Terms proportional to mixed powers of gsg_s and gˉs\bar g_s are in principle present.Comment: 28 pages, LaTeX, added comment
    • …
    corecore