16,592 research outputs found

    A Control Framework for Autonomous Smart Grids for Space Power Applications

    Get PDF
    With the National Aeronautics and Space Administration's (NASA) rising interest in lunar surface operations and deep space exploration, there is a growing need to move from traditional ground-based mission operations to more autonomous vehicle level operations. In lunar surface operations, there are periods of time where communications with ground-based mission control could not occur, forcing vehicles and a lunar base to completely operate independent of the ground. For deep space exploration missions, communication latency times increase to greater than 15 minutes making real-time control of critical systems difficult, if not near impossible. These challenges are driving the need for an autonomous power control system that has the capability to manage power and energy. This will ensure that critical loads have the necessary power to support life systems and carry out critical mission objectives. This paper presents a flexible, hierarchical, distributed control methodology that enables autonomous operation of smart grids and can integrate into a higher level autonomous architecture

    Neutron matter from chiral two- and three-nucleon calculations up to N3^3LO

    Full text link
    Neutron matter is an ideal laboratory for nuclear interactions derived from chiral effective field theory since all contributions are predicted up to next-to-next-to-next-to-leading order (N3^3LO) in the chiral expansion. By making use of recent advances in the partial-wave decomposition of three- nucleon (3N) forces, we include for the first time N3^3LO 3N interactions in many-body perturbation theory (MBPT) up to third order and in self-consistent Green's function theory (SCGF). Using these two complementary many-body frameworks we provide improved predictions for the equation of state of neutron matter at zero temperature and also analyze systematically the many-body convergence for different chiral EFT interactions. Furthermore, we present an extension of the normal-ordering framework to finite temperatures. These developments open the way to improved calculations of neutron-rich matter including estimates of theoretical uncertainties for astrophysical applications.Comment: minor changes, published versio

    Choreographies in Practice

    Full text link
    Choreographic Programming is a development methodology for concurrent software that guarantees correctness by construction. The key to this paradigm is to disallow mismatched I/O operations in programs, called choreographies, and then mechanically synthesise distributed implementations in terms of standard process models via a mechanism known as EndPoint Projection (EPP). Despite the promise of choreographic programming, there is still a lack of practical evaluations that illustrate the applicability of choreographies to concrete computational problems with standard concurrent solutions. In this work, we explore the potential of choreographies by using Procedural Choreographies (PC), a model that we recently proposed, to write distributed algorithms for sorting (Quicksort), solving linear equations (Gaussian elimination), and computing Fast Fourier Transform. We discuss the lessons learned from this experiment, giving possible directions for the usage and future improvements of choreography languages

    Uncertainties in constraining low-energy constants from 3^3H β\beta decay

    Full text link
    We discuss the uncertainties in constraining low-energy constants of chiral effective field theory from 3^3H β\beta decay. The half-life is very precisely known, so that the Gamow-Teller matrix element has been used to fit the coupling cDc_D of the axial-vector current to a short-range two-nucleon pair. Because the same coupling also describes the leading one-pion-exchange three-nucleon force, this in principle provides a very constraining fit, uncorrelated with the 3^3H binding energy fit used to constrain another low-energy coupling in three-nucleon forces. However, so far such 3^3H half-life fits have only been performed at a fixed cutoff value. We show that the cutoff dependence due to the regulators in the axial-vector two-body current can significantly affect the Gamow-Teller matrix elements and consequently also the extracted values for the cDc_D coupling constant. The degree of the cutoff dependence is correlated with the softness of the employed NN interaction. As a result, present three-nucleon forces based on a fit to 3^3H β\beta decay underestimate the uncertainty in cDc_D. We explore a range of cDc_D values that is compatible within cutoff variation with the experimental 3^3H half-life and estimate the resulting uncertainties for many-body systems by performing calculations of symmetric nuclear matter.Comment: 9 pages, 11 figures, published version, includes Erratum, which corrects Figs. 2-6 due to the incorrect c_D relation between 3N forces and two-body currents use

    Current voltage characteristics and excess noise at the trap filling transition in polyacenes

    Get PDF
    Experiments in organic semiconductors (polyacenes) evidence a strong super quadratic increase of the current-voltage (I-V) characteristic at voltages in the transition region between linear (Ohmic) and quadratic (trap free space-charge-limited-current) behaviours. Similarly, excess noise measurements at a given frequency and increasing voltages evidence a sharp peak of the relative spectral density of the current noise in concomitance with the strong super-quadratic I-V characteristics. Here we discuss the physical interpretation of these experiments in terms of an essential contribution from field assisted trapping-detrapping processes of injected carriers. To this purpose, the fraction of filled traps determined by the I-V characteristics is used to evaluate the excess noise in the trap filled transition (TFT) regime. We have found an excellent agreement between the predictions of our model and existing experimental results in tetracene and pentacene thin films of different length in the range 0.65÷35 μm0.65 \div 35 \ \mu m.Comment: 20 pg, 13 figures, in pres

    Photocurrent Noise in Quantum Dot Infrared Photodetectors

    Get PDF

    LHCb perspectives with early data

    Get PDF
    The LHCb experiment will play soon an important role in the Sector of B-Physics by performing new key measurements looking for New Physics. In this paper we will discuss some relevant measurements feasible with early data

    Measuring the LISA test mass magnetic proprieties with a torsion pendulum

    Full text link
    Achieving the low frequency LISA sensitivity requires that the test masses acting as the interferometer end mirrors are free-falling with an unprecedented small degree of deviation. Magnetic disturbances, originating in the interaction of the test mass with the environmental magnetic field, can significantly deteriorate the LISA performance and can be parameterized through the test mass remnant dipole moment m⃗r\vec{m}_r and the magnetic susceptibility χ\chi. While the LISA test flight precursor LTP will investigate these effects during the preliminary phases of the mission, the very stringent requirements on the test mass magnetic cleanliness make ground-based characterization of its magnetic proprieties paramount. We propose a torsion pendulum technique to accurately measure on ground the magnetic proprieties of the LISA/LTP test masses.Comment: 6 pages, 3 figure

    Structural determination of archaeal UDP-N-acetylglucosamine 4-epimerase from Methanobrevibacter ruminantium M1 in complex with the bacterial cell wall intermediate UDP-N-acetylmuramic acid

    Get PDF
    The crystal structure of UDP-N-acetylglucosamine 4-epimerase (UDP-GlcNAc 4-epimerase; WbpP; EC 5.1.3.7), from the archaeal methanogen Methanobrevibacter ruminantium strain M1, was determined to a resolution of 1.65 Ã…. The structure, with a single monomer in the crystallographic asymmetric unit, contained a conserved N-terminal Rossmann fold for nucleotide binding and an active site positioned in the C-terminus. UDP-GlcNAc 4-epimerase is a member of the short-chain dehydrogenase/reductase superfamily, sharing sequence motifs and structural elements characteristic of this family of oxidoreductases and bacterial 4-epimerases. The protein was co-crystallized with coenzyme NADH and UDP-N-acetylmuramic acid, the latter an unintended inclusion and well known product of the bacterial enzyme MurB and a critical intermediate for bacterial cell wall synthesis. This is a non-native UDP sugar amongst archaea and was most likely incorporated from the Eschericha coli expression host during purification of the recombinant enzyme
    • …
    corecore