325 research outputs found
Predictive Role of Serum Thyroglobulin after Surgery and before Radioactive Iodine Therapy in Patients with Thyroid Carcinoma
Introduction: Thyroidectomy followed by radioactive iodine therapy (RAI) is the treatment of choice for differentiated thyroid carcinoma (DTC). Serum thyroglobulin (Tg) measurement has proved to be useful for predicting persistent and/or recurrent disease during follow-up of DTC patients. In our study, we evaluated the risk of disease recurrence in patients with papillary thyroid carcinoma (PTC), who were treated with thyroidectomy and RAI, by measuring serum Tg at different time-points: at least 40 days after surgery, in euthyroidism with TSH < 1.5 and usually 30 days before RAI (Tg−30), on the day of RAI (Tg0), and seven days after RAI (Tg+7). Methods: One hundred and twenty-nine patients with PTC were enrolled in this retrospective study. All patients were treated with 131I for thyroid remnant ablation. Disease relapse (nodal disease or distant disease) during at least 36 months follow-up was evaluated by serum measurements of Tg, TSH, AbTg at different time points and by imaging techniques (neck ultrasonography, 131I-whole body scan (WBS) after Thyrogen® stimulation). Typically, patients were assessed at 3, 6, 12, 18, 24, and 36 months after RAI. We classified patients in five groups: (i) those who developed nodal disease (ND), (ii) those who developed distant disease (DD), (iii) those with biochemical indeterminate response and minimal residual thyroid tissue (R), (iv) those with no evidence of structural or biochemical disease + intermediate ATA risk (NED-I), and (v) those with no evidence of structural or biochemical disease + low ATA risk (NED-L). ROC curves for Tg were generated to find potential discriminating cutoffs of Tg values in all patients’ groups. Results: A total of 15 out of 129 patients (11.63%) developed nodal disease and 5 (3.88%) distant metastases, during the follow-up. We found that Tg−30 (with suppressed TSH) has the same sensitivity and specificity than Tg0 (with stimulated TSH), and it is slightly better than Tg+7, which can be influenced by the size of the residual thyroid tissue. Conclusion: Serum Tg−30 value, measured in euthyroidism 30 days before RAI, is a reliable prognostic factor to predict future nodal or distant disease, thus allowing to plan the most appropriate therapy and follow-up
Les droits disciplinaires des fonctions publiques : « unification », « harmonisation » ou « distanciation ». A propos de la loi du 26 avril 2016 relative à la déontologie et aux droits et obligations des fonctionnaires
The production of tt‾ , W+bb‾ and W+cc‾ is studied in the forward region of proton–proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98±0.02 fb−1 . The W bosons are reconstructed in the decays W→ℓν , where ℓ denotes muon or electron, while the b and c quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions.The production of , and is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 0.02 \mbox{fb}^{-1}. The bosons are reconstructed in the decays , where denotes muon or electron, while the and quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions
Physics case for an LHCb Upgrade II - Opportunities in flavour physics, and beyond, in the HL-LHC era
The LHCb Upgrade II will fully exploit the flavour-physics opportunities of the HL-LHC, and study additional physics topics that take advantage of the forward acceptance of the LHCb spectrometer. The LHCb Upgrade I will begin operation in 2020. Consolidation will occur, and modest enhancements of the Upgrade I detector will be installed, in Long Shutdown 3 of the LHC (2025) and these are discussed here. The main Upgrade II detector will be installed in long shutdown 4 of the LHC (2030) and will build on the strengths of the current LHCb experiment and the Upgrade I. It will operate at a luminosity up to 2×1034
cm−2s−1, ten times that of the Upgrade I detector. New detector components will improve the intrinsic performance of the experiment in certain key areas. An Expression Of Interest proposing Upgrade II was submitted in February 2017. The physics case for the Upgrade II is presented here in more depth. CP-violating phases will be measured with precisions unattainable at any other envisaged facility. The experiment will probe b → sl+l−and b → dl+l− transitions in both muon and electron decays in modes not accessible at Upgrade I. Minimal flavour violation will be tested with a precision measurement of the ratio of B(B0 → μ+μ−)/B(Bs → μ+μ−). Probing charm CP violation at the 10−5 level may result in its long sought discovery. Major advances in hadron spectroscopy will be possible, which will be powerful probes of low energy QCD. Upgrade II potentially will have the highest sensitivity of all the LHC experiments on the Higgs to charm-quark couplings. Generically, the new physics mass scale probed, for fixed couplings, will almost double compared with the pre-HL-LHC era; this extended reach for flavour physics is similar to that which would be achieved by the HE-LHC proposal for the energy frontier
LHCb upgrade software and computing : technical design report
This document reports the Research and Development activities that are carried out in the software and computing domains in view of the upgrade of the LHCb experiment. The implementation of a full software trigger implies major changes in the core software framework, in the event data model, and in the reconstruction algorithms. The increase of the data volumes for both real and simulated datasets requires a corresponding scaling of the distributed computing infrastructure. An implementation plan in both domains is presented, together with a risk assessment analysis
Measurement of the J/ψ pair production cross-section in pp collisions at TeV
The production cross-section of J/ψ pairs is measured using a data sample of pp collisions collected by the LHCb experiment at a centre-of-mass energy of TeV, corresponding to an integrated luminosity of 279 ±11 pb. The measurement is performed for J/ψ mesons with a transverse momentum of less than 10 GeV/c in the rapidity range 2.0 < y < 4.5. The production cross-section is measured to be 15.2 ± 1.0 ± 0.9 nb. The first uncertainty is statistical, and the second is systematic. The differential cross-sections as functions of several kinematic variables of the J/ψ pair are measured and compared to theoretical predictions.The production cross-section of pairs is measured using a data sample of collisions collected by the LHCb experiment at a centre-of-mass energy of , corresponding to an integrated luminosity of . The measurement is performed for mesons with a transverse momentum of less than in the rapidity range . The production cross-section is measured to be . The first uncertainty is statistical, and the second is systematic. The differential cross-sections as functions of several kinematic variables of the pair are measured and compared to theoretical predictions
Measurement of forward production in collisions at TeV
A measurement of the cross-section for production in collisions is presented using data corresponding to an integrated luminosity of fb collected by the LHCb experiment at a centre-of-mass energy of TeV. The electrons are required to have more than GeV of transverse momentum and to lie between 2.00 and 4.25 in pseudorapidity. The inclusive production cross-sections, where the decays to , are measured to be \begin{align*} \begin{split} \sigma_{W^{+} \to e^{+}\nu_{e}}&=1124.4\pm 2.1\pm 21.5\pm 11.2\pm 13.0\,\mathrm{pb},\\ \sigma_{W^{-} \to e^{-}\bar{\nu}_{e}}&=\,\,\,809.0\pm 1.9\pm 18.1\pm\,\,\,7.0\pm \phantom{0}9.4\,\mathrm{pb}, \end{split} \end{align*} where the first uncertainties are statistical, the second are systematic, the third are due to the knowledge of the LHC beam energy and the fourth are due to the luminosity determination. Differential cross-sections as a function of the electron pseudorapidity are measured. The cross-section ratio and production charge asymmetry are also reported. Results are compared with theoretical predictions at next-to-next-to-leading order in perturbative quantum chromodynamics. Finally, in a precise test of lepton universality, the ratio of boson branching fractions is determined to be \begin{align*} \begin{split} \mathcal{B}(W \to e\nu)/\mathcal{B}(W \to \mu\nu)=1.020\pm 0.002\pm 0.019, \end{split} \end{align*} where the first uncertainty is statistical and the second is systematic.A measurement of the cross-section for production in collisions is presented using data corresponding to an integrated luminosity of fb collected by the LHCb experiment at a centre-of-mass energy of TeV. The electrons are required to have more than GeV of transverse momentum and to lie between 2.00 and 4.25 in pseudorapidity. The inclusive production cross-sections, where the decays to , are measured to be \begin{equation*} \sigma_{W^{+} \to e^{+}\nu_{e}}=1124.4\pm 2.1\pm 21.5\pm 11.2\pm 13.0\,\mathrm{pb}, \end{equation*} \begin{equation*} \sigma_{W^{-} \to e^{-}\bar{\nu}_{e}}=\,\,\,809.0\pm 1.9\pm 18.1\pm\,\,\,7.0\pm \phantom{0}9.4\,\mathrm{pb}, \end{equation*} where the first uncertainties are statistical, the second are systematic, the third are due to the knowledge of the LHC beam energy and the fourth are due to the luminosity determination. Differential cross-sections as a function of the electron pseudorapidity are measured. The cross-section ratio and production charge asymmetry are also reported. Results are compared with theoretical predictions at next-to-next-to-leading order in perturbative quantum chromodynamics. Finally, in a precise test of lepton universality, the ratio of boson branching fractions is determined to be \begin{equation*} \mathcal{B}(W \to e\nu)/\mathcal{B}(W \to \mu\nu)=1.020\pm 0.002\pm 0.019, \end{equation*} where the first uncertainty is statistical and the second is systematic.A measurement of the cross-section for W → eν production in pp collisions is presented using data corresponding to an integrated luminosity of 2 fb collected by the LHCb experiment at a centre-of-mass energy of TeV. The electrons are required to have more than 20 GeV of transverse momentum and to lie between 2.00 and 4.25 in pseudorapidity. The inclusive W production cross-sections, where the W decays to eν, are measured to be where the first uncertainties are statistical, the second are systematic, the third are due to the knowledge of the LHC beam energy and the fourth are due to the luminosity determination
Measurement of the B0s→μ+μ− Branching Fraction and Effective Lifetime and Search for B0→μ+μ− Decays
A search for the rare decays Bs0→μ+μ- and B0→μ+μ- is performed at the LHCb experiment using data collected in pp collisions corresponding to a total integrated luminosity of 4.4 fb-1. An excess of Bs0→μ+μ- decays is observed with a significance of 7.8 standard deviations, representing the first observation of this decay in a single experiment. The branching fraction is measured to be B(Bs0→μ+μ-)=(3.0±0.6-0.2+0.3)×10-9, where the first uncertainty is statistical and the second systematic. The first measurement of the Bs0→μ+μ- effective lifetime, τ(Bs0→μ+μ-)=2.04±0.44±0.05 ps, is reported. No significant excess of B0→μ+μ- decays is found, and a 95% confidence level upper limit, B(B0→μ+μ-)<3.4×10-10, is determined. All results are in agreement with the standard model expectations.A search for the rare decays and is performed at the LHCb experiment using data collected in collisions corresponding to a total integrated luminosity of 4.4 fb. An excess of decays is observed with a significance of 7.8 standard deviations, representing the first observation of this decay in a single experiment. The branching fraction is measured to be , where the first uncertainty is statistical and the second systematic. The first measurement of the effective lifetime, ps, is reported. No significant excess of decays is found and a 95 % confidence level upper limit, , is determined. All results are in agreement with the Standard Model expectations
Measurements of prompt charm production cross-sections in pp collisions at TeV
Production cross-sections of prompt charm mesons are measured using data from collisions at the LHC at a centre-of-mass energy of TeV. The data sample corresponds to an integrated luminosity of pb collected by the LHCb experiment. The production cross-sections of , , , and mesons are measured in bins of charm meson transverse momentum, , and rapidity, . They cover the rapidity range and transverse momentum ranges for and and for and mesons. The inclusive cross-sections for the four mesons, including charge-conjugate states, within the range of are determined to be \begin{equation*} \sigma(pp\rightarrow D^0 X) = 1190 \pm 3 \pm 64\,\mu\text{b} \end{equation*} \begin{equation*} \sigma(pp\rightarrow D^+ X) = 456 \pm 3 \pm 34\,\mu\text{b} \end{equation*} \begin{equation*} \sigma(pp\rightarrow D_s^+ X) = 195 \pm 4 \pm 19\,\mu\text{b} \end{equation*} \begin{equation*} \sigma(pp\rightarrow D^{*+} X)= 467 \pm 6 \pm 40\,\mu\text{b} \end{equation*} where the uncertainties are statistical and systematic, respectively.Production cross-sections of prompt charm mesons are measured using data from pp collisions at the LHC at a centre-of-mass energy of 5 TeV. The data sample corresponds to an integrated luminosity of 8.60 ± 0.33 pb collected by the LHCb experiment. The production cross-sections of D, D, D , and D mesons are measured in bins of charm meson transverse momentum, p, and rapidity, y. They cover the rapidity range 2.0 < y < 4.5 and transverse momentum ranges 0 < p < 10 GeV/c for D and D and 1 < p < 10 GeV/c for D and D mesons. The inclusive cross-sections for the four mesons, including charge-conjugate states, within the range of 1 < p < 8 GeV/c are determined to be where the uncertainties are statistical and systematic, respectively.Production cross-sections of prompt charm mesons are measured using data from collisions at the LHC at a centre-of-mass energy of TeV. The data sample corresponds to an integrated luminosity of pb collected by the LHCb experiment. The production cross-sections of , , , and mesons are measured in bins of charm meson transverse momentum, , and rapidity, . They cover the rapidity range and transverse momentum ranges for and and for and mesons. The inclusive cross-sections for the four mesons, including charge-conjugate states, within the range of are determined to be \sigma(pp\rightarrow D^0 X) = 1004 \pm 3 \pm 54\,\mu\text{b} \sigma(pp\rightarrow D^+ X) = 402 \pm 2 \pm 30\,\mu\text{b} \sigma(pp\rightarrow D_s^+ X) = 170 \pm 4 \pm 16\,\mu\text{b} \sigma(pp\rightarrow D^{*+} X)= 421 \pm 5 \pm 36\,\mu\text{b} where the uncertainties are statistical and systematic, respectively
La etapa de la Estrategia de Comunicación en el proceso de planificación de la comunicación y las relaciones públicas
The stage of the strategy is considered as one of the fundamental steps in the planning process of communication and public relations of an organization. However, there is no criterion unit on what it is and how it is established. There are multiple definitions and ways of conceiving the communication and public relations strategy, but in most cases it is defined in a very general way and it does not deepen into what types of steps or decisions it implies. This article aims to analyze the stage of strategy included in the planning process of communication and public relations, considering different authors and specialized publications in this field of study, to know how it is defined and what aspects it includes. The results suggest that there is no conception of the communication strategy that is widely accepted, as well as a lack of concreteness of the steps, processes or decisions for the formulation of the strategy.La etapa de la estrategia es considerada como uno de los pasos o etapas fundamentales en la planificación de la comunicación y las relaciones públicas de una organización. Sin embargo, no hay unidad de criterio sobre qué es y cómo se establece. Hay múltiples definiciones y maneras de concebir la estrategia de comunicación y relaciones públicas, pero en la mayoría de los casos se la define de forma muy general y no se profundiza en qué tipos de pasos o decisiones implica. Este artículo pretende analizar la etapa de la estrategia incluida en el proceso de planificación de la comunicación y las relaciones públicas, considerando diferentes autores y publicaciones especializadas en dicho ámbito de estudio, para conocer cómo se la define y qué aspectos incluye. Los resultados sugieren que no hay una concepción de la estrategia de comunicación que sea ampliamente aceptada, así como una falta de concreción de los pasos, procesos o decisiones para la formulación de la estrategia
- …