714 research outputs found

    Quantum power correction to the Newton law

    Full text link
    We have found the graviton contribution to the one-loop quantum correction to the Newton law. This correction results in interaction decreasing with distance as 1/r^3 and is dominated numerically by the graviton contribution. The previous calculations of this contribution to the discussed effect are demonstrated to be incorrect.Comment: 10 pages, 5 figures; numerical error corrected, few references adde

    Die Agitpropbewegung als Teil der Arbeiterkultur der Weimarer Republik

    Get PDF
    The advent of next-generation sequencing has brought about an explosion of single nucleotide polymorphism (SNP) data in non-model organisms; however, profiling these SNPs across multiple natural populations still requires substantial time and resources. Results: Here, we introduce two cost-efficient quantitative High Resolution Melting (qHRM) methods for measuring allele frequencies at known SNP loci in pooled DNA samples: the "peaks" method, which can be applied to large numbers of SNPs, and the "curves" method, which is more labor intensive but also slightly more accurate. Using the reef-building coral Acropora millepora, we show that both qHRM methods can recover the allele proportions from mixtures prepared using two or more individuals of known genotype. We further demonstrate advantages of each method over previously published methods; specifically, the "peaks" method can be rapidly scaled to screen several hundred SNPs at once, whereas the "curves" method is better suited for smaller numbers of SNPs. Conclusions: Compared to genotyping individual samples, these methods can save considerable effort and genotyping costs when relatively few candidate SNPs must be profiled across a large number of populations. One of the main applications of this method could be validation of SNPs of interest identified in population genomic studies.Australian Institute of Marine ScienceNational Science Foundation DEB-1054766Cellular and Molecular Biolog

    Twenty Years of the Weyl Anomaly

    Full text link
    In 1973 two Salam prot\'{e}g\'{e}s (Derek Capper and the author) discovered that the conformal invariance under Weyl rescalings of the metric tensor gμν(x)→Ω2(x)gμν(x)g_{\mu\nu}(x)\rightarrow\Omega^2(x)g_{\mu\nu}(x) displayed by classical massless field systems in interaction with gravity no longer survives in the quantum theory. Since then these Weyl anomalies have found a variety of applications in black hole physics, cosmology, string theory and statistical mechanics. We give a nostalgic review. (Talk given at the {\it Salamfest}, ICTP, Trieste, March 1993.)Comment: 43 page

    Strongly interacting WW bosons and supersymmetry

    Full text link
    We present arguments in favor of the idea that supersymmetric sigma models with compact symmetric K\"ahler spaces as target manifolds have a second-order phase transition in four dimensions. When applied to electroweak symmetry breaking, these models then do not require a light Higgs boson or techni-resonances but predict fermionic superpartners of longitudinal W's and Z with masses at or below TeV scale. Presence of the phase transition leads to a fractional-power energy dependence of fixed-angle scattering amplitude of longitudinal W's and Z's at high energies.Comment: 8 pages, LATEX, UCLA/93/TEP/2

    A Unified Conformal Model for Fundamental Interactions without Dynamical Higgs Field

    Get PDF
    A Higgsless model for strong, electro-weak and gravitational interactions is proposed. This model is based on the local symmetry group SU(3)xSU(2)xU(1)xC where C is the local conformal symmetry group. The natural minimal conformally invariant form of total lagrangian is postulated. It contains all Standard Model fields and gravitational interaction. Using the unitary gauge and the conformal scale fixing conditions we can eliminate all four real components of the Higgs doublet in this model. However the masses of vector mesons, leptons and quarks are automatically generated and are given by the same formulas as in the conventional Standard Model. The gravitational sector is analyzed and it is shown that the model admits in the classical limit the Einsteinian form of gravitational interactions. No figures.Comment: 25 pages, preprin

    Light--like Wilson loops and gauge invariance of Yang--Mills theory in 1+1 dimensions

    Full text link
    A light-like Wilson loop is computed in perturbation theory up to O(g4){\cal O} (g^4) for pure Yang--Mills theory in 1+1 dimensions, using Feynman and light--cone gauges to check its gauge invariance. After dimensional regularization in intermediate steps, a finite gauge invariant result is obtained, which however does not exhibit abelian exponentiation. Our result is at variance with the common belief that pure Yang--Mills theory is free in 1+1 dimensions, apart perhaps from topological effects.Comment: 10 pages, plain TeX, DFPD 94/TH/

    Trace Anomaly and Backreaction of the Dynamical Casimir Effect

    Full text link
    The Casimir energy for massless scalar field which satisfies priodic boundary conditions in two-dimensional domain wall background is calculated by making use of general properties of renormalized stress-tensor. The line element of domain wall is time dependent, the trace anomaly which is the nonvanishing TÎĽÎĽT^{\mu}_{\mu} for a conformally invariant field after renormalization, represent the back reaction of the dynamical Casimir effect.Comment: 8 pages, no figures, typos corrected, discussion added, has been accepted for the publication in GR

    Thermal Effects on the Low Energy N=2 SUSY Yang-Mills Theory

    Full text link
    Using the low energy effective action of the N=2 supersymmetric SU(2) Yang-Mills theory we calculate the free energy at finite temperature, both in the semiclassical region and in the dual monopole/dyon theory. In all regions the free energy depends on both the temperature T and the appropriate moduli parameter, and is thus minimized only for specific values of the moduli parameter, in contrast to the T=0 case where the energy vanishes all over the moduli space. Within the validity of perturbation theory, we find that the finite temperature Yang-Mills theory is stable only at definite points in the moduli space, i.e. for a specific value of the monopole/dyon mass or when the scalar field expectation value goes to infinity.Comment: 24 pages, Latex, uses axodra
    • …
    corecore