77 research outputs found

    The genetic epidemiology of joint shape and the development of osteoarthritis

    Get PDF
    Congruent, low-friction relative movement between the articulating elements of a synovial joint is an essential pre-requisite for sustained, efficient, function. Where disorders of joint formation or maintenance exist, mechanical overloading and osteoarthritis (OA) follow. The heritable component of OA accounts for ~ 50% of susceptible risk. Although almost 100 genetic risk loci for OA have now been identified, and the epidemiological relationship between joint development, joint shape and osteoarthritis is well established, we still have only a limited understanding of the contribution that genetic variation makes to joint shape and how this modulates OA risk. In this article, a brief overview of synovial joint development and its genetic regulation is followed by a review of current knowledge on the genetic epidemiology of established joint shape disorders and common shape variation. A summary of current genetic epidemiology of OA is also given, together with current evidence on the genetic overlap between shape variation and OA. Finally, the established genetic risk loci for both joint shape and osteoarthritis are discussed

    Homeodomain proteins: an update

    Get PDF

    Ge(Sn) nano-island/Si heterostructure photodetectors with plasmonic antennas

    Get PDF
    We report on photodetection in deep subwavelength Ge(Sn) nano-islands on Si nano-pillar substrates, in which self-aligned nano-antennas in the Al contact metal are used to enhance light absorption by means of local surface plasmon resonances. The impact of parameters such as substrate doping and device geometry on the measured responsivities are investigated and our experimental results are supported by simulations of the three-dimensional distribution of the electromagnetic fields. Comparatively high optical responsivities of about 0.1 A W-1 are observed as a consequence of the excitation of localized surface plasmons, making our nano-island photodetectors interesting for applications in which size reduction is essential

    Extracellular alkalinization induces endothelium-derived nitric oxide dependent relaxation in rat thoracic aorta

    No full text
    Aim: To investigate the mechanism through which the extracellular alkalinization promotes relaxation in rat thoracic aorta. Methods: The relaxation response to NaOH-induced extracellular alkalinization (7.4-8.5) was measured in aortic rings pre-contracted with phenylephrine (Phe, 10(-6) M). The vascular reactivity experiments were performed in endothelium-intact and -denuded rings, in the presence or and absence of indomethacin (10(-5) M), NG-nitro-L-arginine methyl ester (L-NAME, 10(-4) M), N-(6-Aminohexyl)-5-chloro-1-naphthalenesulfonamide/HCl (W-7, 10(-7) M), 2,5-dimethylbenzimidazole (DMB, 2 x 10(-5) M) and methyl-B-cyclodextrin (10(-2) M). In addition, the effects of NaOH-induced extracellular alkalinization (pH 8.0 and 8.5) on the intracellular nitric oxide (NO) concentration was evaluated in isolated endothelial cells loaded with diaminofluorescein-FM diacetate (DAF-FM DA, 5 mu M), in the presence and absence of DMB (2 x 10(-5) M). Results: The extracellular alkalinization failed to induce any change in vascular tone in aortic rings pre-contracted with KCl. In rings pre-contracted with Phe, the extracellular alkalinization caused relaxation in the endothelium-intact rings only, and this relaxation was maintained after cyclooxygenase inhibition; completely abolished by the inhibition of nitric oxide synthase (NOS), Ca(2+)/calmodulin and Na(+)/Ca(2+). exchanger (NCX), and partially blunted by the caveolae disassembly. Conclusions: These results suggest that, in rat thoracic aorta, that extracellular alkalinization with NaOH activates the NCX reverse mode of endothelial cells in rat thoracic aorta, thereby the intracellular Ca(2+) concentration and activating the Ca(2+)/calmodulin-dependent NOS. In turn, NO is released promoting relaxation. (C) 2010 Elsevier Inc. All rights reserved.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Fundacao de Apoio ao Ensino, Pesquisa e Assistencia do Hospital das Clinicas da Faculdade de Medicina de Ribeirao Preto da Universidade de Sao Paulo (FAEPA/HCFMRP/USP

    The formation of a Sn monolayer on Ge(1 0 0) studied at the atomic scale

    No full text
    The growth of multi-layer germanium-tin (GeSn) quantum wells offers an intriguing pathway towards the integration of lasers in a CMOS platform. An important step in growing high quality quantum well interfaces is the formation of an initial wetting layer. However, key atomic-scale details of this process have not previously been discussed. We use scanning tunneling microscopy combined with density functional theory to study the deposition of Sn on Ge(1 0 0) at room temperature over a coverage range of 0.01 to 1.24 monolayers. We demonstrate the formation of a sub-2% Ge content GeSn wetting layer from three atomic-scale characteristic ad-dimer structural components, and show that small quantities of Sn incorporate into the Ge surface forming two atomic configurations. The ratio of the ad-dimer structures changes with increasing Sn coverage, indicating a change in growth kinetics. At sub-monolayer coverage, the least densely packing ad-dimer structure is most abundant. As the layer closes, forming a two-dimensional wetting layer, the more densely packing ad-dimer structure become dominant. These results demonstrate the capability to form an atomically smooth wetting layer at room temperature, and provide critical atomic-scale insights for the optimization of growth processes of GeSn multi-quantum-wells to meet the quality requirements of optical GeSn-based devices
    • 

    corecore