260 research outputs found

    Density-functional calculation of ionization energies of current-carrying atomic states

    Full text link
    Current-density-functional theory is used to calculate ionization energies of current-carrying atomic states. A perturbative approximation to full current-density-functional theory is implemented for the first time, and found to be numerically feasible. Different parametrizations for the current-dependence of the density functional are critically compared. Orbital currents in open-shell atoms turn out to produce a small shift in the ionization energies. We find that modern density functionals have reached an accuracy at which small current-related terms appearing in open-shell configurations are not negligible anymore compared to the remaining difference to experiment.Comment: 7 pages, 2 tables, accepted by Phys. Rev.

    Andreev reflection and Klein tunneling in graphene

    Full text link
    This is a colloquium-style introduction to two electronic processes in a carbon monolayer (graphene), each having an analogue in relativistic quantum mechanics. Both processes couple electron-like and hole-like states, through the action of either a superconducting pair potential or an electrostatic potential. The first process, Andreev reflection, is the electron-to-hole conversion at the interface with a superconductor. The second process, Klein tunneling, is the tunneling through a p-n junction. Existing and proposed experiments on Josephson junctions and bipolar junctions in graphene are discussed from a unified perspective. CONTENTS: I. INTRODUCTION II. BASIC PHYSICS OF GRAPHENE (Dirac equation; Time reversal symmetry; Boundary conditions; Pseudo-diffusive dynamics) III. ANDREEV REFLECTION (Electron-hole conversion; Retro-reflection vs. specular reflection; Dirac-Bogoliubov-de Gennes equation; Josephson junctions; Further reading) IV. KLEIN TUNNELING (Absence of backscattering; Bipolar junctions; Magnetic field effects; Further reading) V. ANALOGIES (Mapping between NS and p-n junction; Retro-reflection vs. negative refraction; Valley-isospin dependent quantum Hall effect; Pseudo-superconductivity)Comment: 20 pages, 28 figures; "Colloquium" for Reviews of Modern Physic

    Simple implementation of complex functionals: scaled selfconsistency

    Full text link
    We explore and compare three approximate schemes allowing simple implementation of complex density functionals by making use of selfconsistent implementation of simpler functionals: (i) post-LDA evaluation of complex functionals at the LDA densities (or those of other simple functionals); (ii) application of a global scaling factor to the potential of the simple functional; and (iii) application of a local scaling factor to that potential. Option (i) is a common choice in density-functional calculations. Option (ii) was recently proposed by Cafiero and Gonzalez. We here put their proposal on a more rigorous basis, by deriving it, and explaining why it works, directly from the theorems of density-functional theory. Option (iii) is proposed here for the first time. We provide detailed comparisons of the three approaches among each other and with fully selfconsistent implementations for Hartree, local-density, generalized-gradient, self-interaction corrected, and meta-generalized-gradient approximations, for atoms, ions, quantum wells and model Hamiltonians. Scaled approaches turn out to be, on average, better than post-approaches, and unlike these also provide corrections to eigenvalues and orbitals. Scaled selfconsistency thus opens the possibility of efficient and reliable implementation of density functionals of hitherto unprecedented complexity.Comment: 12 pages, 1 figur

    Exchange-correlation vector potentials and vorticity-dependent exchange-correlation energy densities in two-dimensional systems

    Full text link
    We present a new approach how to calculate the scalar exchange-correlation potentials and the vector exchange-correlation potentials from current-carrying ground states of two-dimensional quantum dots. From these exchange-correlation potentials we derive exchange-correlation energy densities and examine their vorticity (or current) dependence. Compared with parameterizations of current-induced effects in literature we find an increased significance of corrections due to paramagnetic current densities.Comment: 5 figures, submitted to PR

    Interaction Between Superconducting and Ferromagnetic Order Parameters in Graphite-Sulfur Composites

    Full text link
    The superconductivity of graphite-sulfur composites is highly anisotropic and associated with the graphite planes. The superconducting state coexists with the ferromagnetism of pure graphite, and a continuous crossover from superconducting to ferromagnetic-like behavior could be achieved by increasing the magnetic field or the temperature. The angular dependence of the magnetic moment m(alpha) provides evidence for an interaction between the ferromagnetic and the superconducting order parameters.Comment: 11 pages, 4 figures, to be published in Phys. Rev.

    The spin angular gradient approximation in the density functional theory

    Full text link
    A spin angular gradient approximation for the exchange correlation magnetic field in the density functional formalism is proposed. The usage of such corrections leads to a consistent spin dynamical approach beyond the local approximation. The proposed technique does not contain any approximations for the form of potential and can be used in modern full potential band structure methods. The obtained results indicate that the direct 'potential' exchange in 3d magnets is rather small compared to the indirect 'kinetic' exchange, thus justifies the dynamical aspect of the local density approximation in 3d metals

    Tau Neutrinos in the Auger Observatory : A New Window to UHECR Sources

    Get PDF
    The cosmic ray spectrum has been shown to extend well beyond 10^{20}eV. With nearly 20 events observed in the last 40 years, it is now established that particles are accelerated or produced in the universe with energies near 10^{21}eV. In all production models neutrinos and photons are part of the cosmic ray flux. In acceleration models (bottom-up models), they are produced as secondaries of the possible interactions of the accelerated charged particle; in direct production models (top-down models) they are a dominant fraction of the decay chain. In addition, hadrons above the GZK threshold energy will also produce, along their path in the Universe, neutrinos and photons as secondaries of the pion photo-production processes. Therefore, photons and neutrinos are very distinctive signatures of the nature and distribution of the potential sources of ultra high energy cosmic rays. In the following we describe the tau neutrino detection and identification capabilities of the Auger observatory. We show that in the range 3x10^{17}-3x10^{20}eV the Auger effective apperture reaches a few tenths of km^2.sr, making the observatory sensitive to fluxes as low as a few tau neutrinos per km^2.sr.year. In the hypothesis of nu_mu nu_tau oscillations with full mixing, this sensitivity allows to probe the GZK cutoff as well as to provide model independent constraints on the mechanisms of production of ultra high energy cosmic rays.Comment: 10 pages, 11 figures, accepted by Astroparticle physic

    Exchange-correlation energy densities for two-dimensional systems from quantum dot ground-states

    Full text link
    In this paper we present a new approach how to extract polarization-dependent exchange-correlation energy densities for two-dimensional systems from reference densities and energies of quantum dots provided by exact diagonalization. Compared with results from literature we find systematic corrections for all polarizations in the regime of high densities.Comment: 7 figures. submitted to Phys. Rev.

    Exact exchange-correlation potential of a ionic Hubbard model with a free surface

    Full text link
    We use Lanczos exact diagonalization to compute the exact exchange-correlation (xc) potential of a Hubbard chain with large binding energy ("the bulk") followed by a chain with zero binding energy ("the vacuum"). Several results of density functional theory in the continuum (sometimes controversial) are verified in the lattice. In particular we show explicitly that the fundamental gap is given by the gap in the Kohn-Sham spectrum plus a contribution due to the jump of the xc-potential when a particle is added. The presence of a staggered potential and a nearest-neighbor interaction V allows to simulate a ionic solid. We show that in the ionic regime in the small hopping amplitude limit the xc-contribution to the gap equals V, while in the Mott regime it is determined by the Hubbard U interaction. In addition we show that correlations generates a new potential barrier at the surface
    • …
    corecore