34,917 research outputs found

    Spin-orbit tuned metal-insulator transitions in single-crystal Sr2Ir1-xRhxO4 (0\leqx\leq1)

    Full text link
    Sr2IrO4 is a magnetic insulator driven by spin-orbit interaction (SOI) whereas the isoelectronic and isostructural Sr2RhO4 is a paramagnetic metal. The contrasting ground states have been shown to result from the critical role of the strong SOI in the iridate. Our investigation of structural, transport, magnetic and thermal properties reveals that substituting 4d Rh4+ (4d5) ions for 5d Ir4+(5d5) ions in Sr2IrO4 directly reduces the SOI and rebalances the competing energies so profoundly that it generates a rich phase diagram for Sr2Ir1-xRhxO4 featuring two major effects: (1) Light Rh doping (0\leqx\leq0.16) prompts a simultaneous and precipitous drop in both the electrical resistivity and the magnetic ordering temperature TC, which is suppressed to zero at x = 0.16 from 240 K at x=0. (2) However, with heavier Rh doping (0.24< x<0.85 (\pm0.05)) disorder scattering leads to localized states and a return to an insulating state with spin frustration and exotic magnetic behavior that only disappears near x=1. The intricacy of Sr2Ir1-xRhxO4 is further highlighted by comparison with Sr2Ir1-xRuxO4 where Ru4+(4d4) drives a direct crossover from the insulating to metallic states.Comment: 5 figure

    A large accretion disk of extreme eccentricity in the TDE ASASSN-14li

    Full text link
    In the canonical model for tidal disruption events (TDEs), the stellar debris circularizes quickly to form an accretion disk of size about twice the orbital pericenter of the star. Most TDEs and candidates discovered in the optical/UV have broad optical emission lines with complex and diverse profiles of puzzling origin. Liu et al. recently developed a relativistic elliptical disk model of constant eccentricity in radius for the broad optical emission lines of TDEs and well reproduced the double-peaked line profiles of the TDE candidate PTF09djl with a large and extremely eccentric accretion disk. In this paper, we show that the optical emission lines of the TDE ASASSN-14li with radically different profiles are well modelled with the relativistic elliptical disk model, too. The accretion disk of ASASSN-14li has an eccentricity 0.97 and semimajor axis of 847 times the Schwarzschild radius (r_S) of the black hole (BH). It forms as the consequence of tidal disruption of a star passing by a massive BH with orbital pericenter 25r_S. The optical emission lines of ASASSN-14li are powered by an extended X-ray source of flat radial distribution overlapping the bulk of the accretion disk and the single-peaked asymmetric line profiles are mainly due to the orbital motion of the emitting matter within the disk plane of inclination about 26\degr and of pericenter orientation closely toward the observer. Our results suggest that modelling the complex line profiles is powerful in probing the structures of accretion disks and coronal X-ray sources in TDEs.Comment: 10 pages, 8 figures, accepted for publication in the MNRA

    Evolution of Magnetism in Single-Crystal Honeycomb Iridates

    Get PDF
    We report the successful synthesis of single-crystals of the layered iridate, (Na1x_{1-x}Lix_{x})2_2IrO3_3, 0x0.90\leq x \leq 0.9, and a thorough study of its structural, magnetic, thermal and transport properties. The new compound allows a controlled interpolation between Na2_2IrO3_3 and Li2_2IrO3_3, while maintaing the novel quantum magnetism of the honeycomb Ir4+^{4+} planes. The measured phase diagram demonstrates a dramatic suppression of the N\'eel temperature, TNT_N, at intermediate xx suggesting that the magnetic order in Na2_2IrO3_3 and Li2_2IrO3_3 are distinct, and that at x0.7x\approx 0.7, the compound is close to a magnetically disordered phase that has been sought after in Na2_2IrO3_3 and Li2_2IrO3_3. By analyzing our magnetic data with a simple theoretical model we also show that the trigonal splitting, on the Ir4+^{4+} ions changes sign from Na2_2IrO3_3 and Li2_2IrO3_3, and the honeycomb iridates are in the strong spin-orbit coupling regime, controlled by \jeff=1/2 moments.Comment: updated version with more dat

    Out of Equilibrium Non-perturbative Quantum Field Dynamics in Homogeneous External Fields

    Get PDF
    The quantum dynamics of the symmetry broken lambda (Phi^2)^2 scalar field theory in the presence of an homogeneous external field is investigated in the large N limit. We choose as initial state the ground state for a constant external field J .The sign of the external field is suddenly flipped from J to - J at a given time and the subsequent quantum dynamics calculated. Spinodal instabilities and parametric resonances produce large quantum fluctuations in the field components transverse to the external field. This allows the order parameter to turn around the maximum of the potential for intermediate times. Subsequently, the order parameter starts to oscillate near the global minimum for external field - J, entering a novel quasi-periodic regime.Comment: LaTex, 30 pages, 12 .ps figures, improved version to appear in Phys Rev

    Destruction of the Mott Insulating Ground State of Ca_2RuO_4 by a Structural Transition

    Full text link
    We report a first-order phase transition at T_M=357 K in single crystal Ca_2RuO_4, an isomorph to the superconductor Sr_2RuO_4. The discontinuous decrease in electrical resistivity signals the near destruction of the Mott insulating phase and is triggered by a structural transition from the low temperature orthorhombic to a high temperature tetragonal phase. The magnetic susceptibility, which is temperature dependent but not Curie-like decreases abruptly at TM and becomes less temperature dependent. Unlike most insulator to metal transitions, the system is not magnetically ordered in either phase, though the Mott insulator phase is antiferromagnetic below T_N=110 K.Comment: Accepted for publication in Phys. Rev. B (Rapid Communications

    Submm-bright QSOs at z~2: signposts of co-evolution at high z

    Full text link
    We have assembled a sample of 5 X-ray and submm-luminous z~2 QSOs which are therefore both growing their central black holes through accretion and forming stars copiously at a critical epoch. Hence, they are good laboratories to investigate the co-evolution of star formation and AGN. We have performed a preliminary analysis of the AGN and SF contributions to their UV-to-FIR SEDs, fitting them with simple direct (disk), reprocessed (torus) and star formation components. All three are required by the data and hence we confirm that these objects are undergoing strong star formation in their host galaxies at rates 500-2000 Msun/y. Estimates of their covering factors are between about 30 and 90%. In the future, we will assess the dependence of these results on the particular models used for the components and relate their observed properties to the intrinsice of the central engine and the SF material, as well as their relevance for AGN-galaxy coevolution.Comment: 6 pages, 2 figures, contributed talk to "Nuclei of Seyfert galaxies and QSOs - Central engine & conditions of star formation" November 6-8, 2012. MPIfR, Bonn, Germany. Po
    corecore