52 research outputs found

    Solid-surface vitrification is an appropriate and convenient method for cryopreservation of isolated rat follicles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cryopreservation of isolated follicles may be a potential option to restore fertility in young women with cancer, because it can prevent the risks of cancer transmission. Several freezing protocols are available, including slow-rate freezing, open-pulled straws vitrification (OPS) and solid-surface vitrification (SSV, a new freezing technique). The purpose of our study was to investigate the effects of these freezing procedures on viability, ultrastructure and developmental capacity of isolated rat follicles.</p> <p>Methods</p> <p>Isolated follicles from female Sprague-Dawley rats were randomly assigned to SSV, OPS and slow-rate freezing groups for cryopreservation. Follicle viability assessment and ultrastructural examination were performed after thawing. In order to study the developmental capacity of thawed follicles, we performed <it>in vitro </it>culture with a three-dimensional (3D) system by alginate hydrogels.</p> <p>Results</p> <p>Our results showed that the totally viable rate of follicles vitrified by SSV (64.76%) was slightly higher than that of the OPS group (62.38%) and significantly higher than that of the slow-rate freezing group (52.65%; <it>P </it>< 0.05). The ultrastructural examination revealed that morphological alterations were relatively low in the SSV group compared to the OPS and slow-rate freezing groups. After <it>in vitro </it>culture within a 3D system using alginate hydrogels, we found the highest increase (28.90 ± 2.21 μm) in follicle diameter in follicles from the SSV group. The estradiol level in the SSV group was significantly higher than those in the OPS and slow-rate freezing groups at the end of a 72-hr culture period (<it>P </it>< 0.05).</p> <p>Conclusions</p> <p>Our results suggest that the SSV method is an appropriate and convenient method for cryopreservation of isolated rat follicles compared with the conventional slow-rate freezing method and the OPS method.</p

    A comprehensive preimplantation genetic testing approach for SEA-type α-thalassemia by fluorescent gap-polymerase chain reaction combined with haplotype analysis

    Get PDF
    Introduction: This study aimed to evaluate the feasibility and necessity of using fluorescence Gap-polymerase chain reaction combined with haplotype analysis in preimplantation genetic testing for SEA-type α-thalassemia.Methods: A total of 26 preimplantation genetic testing biopsy cycles were performed in 25 families from June 2021 to February 2022. All couples were carriers of SEA-type α-thalassemia. Fluorescent Gap-polymerase chain reaction was used for detecting fragment deletion. Subsequently, according to the results of polymerase chain reaction, reference embryos were identified to establish haplotype using single nucleotide polymorphism array, and aneuploidy was screened simultaneously. In cases wherein the polymerase chain reaction results were inconsistent with the haplotype results, the reasons were investigated, either by retest of the biopsied samples or rebiopsy of the embryo.Results: Among the 172 embryos, 162 had consistent results when tested using both methods, resulting in a consistency rate of 94.2%. Conversely, 10 embryos had inconsistent results, mainly due to chromosome 16 aneuploidy (n = 7), allele dropout in Gap-polymerase chain reaction (n = 2), or incorrect haplotype due to poor sample amplification quality (n = 1). The clinical pregnancy rate of each frozen-thawed embryo transfer was 57.7% (15/26). Six families underwent prenatal diagnosis, which confirmed the results of preimplantation genetic testing.Conclusion: Fluorescent Gap-polymerase chain reaction combined with haplotype analysis is feasible and necessary for SEA-type α-thalassemia preimplantation genetic testing

    An Exploration of the Impact of Anticentromere Antibody on Early-Stage Embryo

    No full text
    Background. Previously, we found women with positive anticentromere antibody showed impaired potential of oocyte maturation and embryo cleavage; the possible mechanism behind this phenomenon was still unknown. Objective. Thus, the present study aimed to preliminarily explore whether ACA could penetrate into the living embryos and impair their developmental potential via in vitro coculture with mouse embryos. Methods. Mouse embryos were collected and used for in vitro culture with polyclonal anticentromere protein A (CENP-A) antibody; then, immunofluorescence assay was performed to determine the penetration of antibody into embryos, and embryo development potential was observed. Results. All embryos cultured with anti-CENP-A antibody exhibited immunofluorescence on the nucleus, while none of the embryos from the control groups showed immunofluorescence. Additionally, embryos cultured with anti-CENP-A antibody experienced significant growth impairment compared with controls. Conclusion. Mouse embryos may be a direct target for ACA in vitro prior to implantation. However, the precise mechanism needs further clarification

    Clock gene Bmal1

    No full text

    Epitope Mapping of Metuximab on CD147 Using Phage Display and Molecular Docking

    Get PDF
    Metuximab is the generic name of Licartin, a new drug for radioimmunotherapy of hepatocellular carcinoma. Although it is known to be a mouse monoclonal antibody against CD147, the complete epitope mediating the binding of metuximab to CD147 remains unknown. We panned the Ph.D.-12 phage display peptide library against metuximab and got six mimotopes. The following bioinformatics analysis based on mimotopes suggested that metuximab recognizes a conformational epitope composed of more than 20 residues. The residues of its epitope may include T28, V30, K36, L38, K57, F74, D77, S78, D79, D80, Q81, G83, S86, N98, Q100, L101, H102, G103, P104, V131, P132, and K191. The homology modeling of metuximab and the docking of CD147 to metuximab were also performed. Based on the top one docking model, the epitope was predicted to contain 28 residues: AGTVFTTV (23–30), I37, D45, E84, V88, EPMGTANIQLH (92–102), VPP (131–133), Q164, and K191. Almost half of the residues predicted on the basis of mimotope analysis also appear in the docking result, indicating that both results are reliable. As the predicted epitopes of metuximab largely overlap with interfaces of CD147-CD147 interactions, a structural mechanism of metuximab is proposed as blocking the formation of CD147 dimer

    Loss of Bmal1

    No full text

    Comparison of implantation rate.

    No full text
    <p>In the long protocol group, the implantation rates of the four age ranges were significantly higher than those in the short protocol group (P<0.05). As aged increased, the implantation rates of the long protocol group significantly decreased (P<0.05). * <i>P</i><0.05 versus the short protocol group.</p
    • …
    corecore