116 research outputs found

    The inside story of adenosine

    Get PDF
    Several physiological functions of adenosine (Ado) appear to be mediated by four G protein-coupled Ado receptors. Ado is produced extracellularly from the catabolism of the excreted ATP, or intracellularly from AMP, and then released through its transporter. High level of intracellular Ado occurs only at low energy charge, as an intermediate of ATP breakdown, leading to hypoxanthine production. AMP, the direct precursor of Ado, is now considered as an important stress signal inside cell triggering metabolic regulation through activation of a specific AMP-dependent protein kinase. Intracellular Ado produced from AMP by allosterically regulated nucleotidases can be regarded as a stress signal as well. To study the receptor-independent effects of Ado, several experimental approaches have been proposed, such as inhibition or silencing of key enzymes of Ado metabolism, knockdown of Ado receptors in animals, the use of antagonists, or cell treatment with deoxyadenosine, which is substrate of the enzymes acting on Ado, but is unable to interact with Ado receptors. In this way, it was demonstrated that, among other functions, intracellular Ado modulates angiogenesis by regulating promoter methylation, induces hypothermia, promotes apoptosis in sympathetic neurons, and, in the case of oxygen and glucose deprivation, exerts a cytoprotective effect by replenishing the ATP pool

    Emerging Role of Purine Metabolizing Enzymes in Brain Function and Tumors

    Get PDF
    The growing evidence of the involvement of purine compounds in signaling, of nucleotide imbalance in tumorigenesis, the discovery of purinosome and its regulation, cast new light on purine metabolism, indicating that well known biochemical pathways may still surprise. Adenosine deaminase is important not only to preserve functionality of immune system but also to ensure a correct development and function of central nervous system, probably because its activity regulates the extracellular concentration of adenosine and therefore its function in brain. A lot of work has been done on extracellular 5'-nucleotidase and its involvement in the purinergic signaling, but also intracellular nucleotidases, which regulate the purine nucleotide homeostasis, play unexpected roles, not only in tumorigenesis but also in brain function. Hypoxanthine guanine phosphoribosyl transferase (HPRT) appears to have a role in the purinosome formation and, therefore, in the regulation of purine synthesis rate during cell cycle with implications in brain development and tumors. The final product of purine catabolism, uric acid, also plays a recently highlighted novel role. In this review, we discuss the molecular mechanisms underlying the pathological manifestations of purine dysmetabolisms, focusing on the newly described/hypothesized roles of cytosolic 5'-nucleotidase II, adenosine kinase, adenosine deaminase, HPRT, and xanthine oxidase

    Expression of bovine cytosolic 5’-nucleotidase (cN-II) in yeast: nucleotide pools disturbance and its consequences on growth and homologous recombination

    Get PDF
    Cytosolic 5′-nucleotidase II is a widespread IMP hydrolyzing enzyme, essential for cell vitality, whose role in nucleotide metabolism and cell function is still to be exactly determined. Cytosolic 5′-nucleotidase overexpression and silencing have both been demonstrated to be toxic for mammalian cultured cells. In order to ascertain the effect of enzyme expression on a well-known eukaryote simple model, we expressed cytosolic 5′-nucleotidase II in Saccharomyces cerevisiae, which normally hydrolyzes IMP through the action of a nucleotidase with distinct functional and structural features. Heterologous expression was successful. The yeast cells harbouring cytosolic 5′-nucleotidase II displayed a shorter duplication time and a significant modification of purine and pyrimidine derivatives concentration as compared with the control strain. Furthermore the capacity of homologous recombination in the presence of mutagenic compounds of yeast expressing cytosolic 5′-nucleotidase II was markedly impaired

    Cytosolic 5'-Nucleotidase II Interacts with the Leucin Rich Repeat of NLR Family Member Ipaf

    Get PDF
    IMP/GMP preferring cytosolic 5'-nucleotidase II (cN-II) is a bifunctional enzyme whose activities and expression play crucial roles in nucleotide pool maintenance, nucleotide-dependent pathways and programmed cell death. Alignment of primary amino acid sequences of cN-II from human and other organisms show a strong conservation throughout the entire vertebrata taxon suggesting a fundamental role in eukaryotic cells. With the aim to investigate the potential role of this homology in protein-protein interactions, a two hybrid system screening of cN-II interactors was performed in S. cerevisiae. Among the X positive hits, the Leucin Rich Repeat (LRR) domain of Ipaf was found to interact with cN-II. Recombinant Ipaf isoform B (lacking the Nucleotide Binding Domain) was used in an in vitro affinity chromatography assay confirming the interaction obtained in the screening. Moreover, co-immunoprecipitation with proteins from wild type Human Embryonic Kidney 293 T cells demonstrated that endogenous cN-II co-immunoprecipitated both with wild type Ipaf and its LRR domain after transfection with corresponding expression vectors, but not with Ipaf lacking the LRR domain. These results suggest that the interaction takes place through the LRR domain of Ipaf. In addition, a proximity ligation assay was performed in A549 lung carcinoma cells and in MDA-MB-231 breast cancer cells and showed a positive cytosolic signal, confirming that this interaction occurs in human cells. This is the first report of a protein-protein interaction involving cN-II, suggesting either novel functions or an additional level of regulation of this complex enzym

    Cytosolic 5′-nucleotidase II silencing in a human lung carcinoma cell line opposes cancer phenotype with a concomitant increase in p53 phosphorylation

    Get PDF
    Purine homeostasis is maintained by a purine cycle in which the regulated member is a cytosolic 5′-nucleotidase II (cN-II) hydrolyzing IMP and GMP. Its expression is particularly high in proliferating cells, indeed high cN-II activity or expression in hematological malignancy has been associated to poor prognosis and chemoresistance. Therefore, a strong interest has grown in developing cN-II inhibitors, as potential drugs alone or in combination with other compounds. As a model to study the effect of cN-II inhibition we utilized a lung carcinoma cell line (A549) in which the enzyme was partially silenced and its low activity conformation was stabilized through incubation with 2-deoxyglucose. We measured nucleotide content, reduced glutathione, activities of enzymes involved in glycolysis and Krebs cycle, protein synthesis, mitochondrial function, cellular proliferation, migration and viability. Our results demonstrate that high cN-II expression is associated with a glycolytic, highly proliferating phenotype, while silencing causes a reduction of proliferation, protein synthesis and migration ability, and an increase of oxidative performances. Similar results were obtained in a human astrocytoma cell line. Moreover, we demonstrate that cN-II silencing is concomitant with p53 phosphorylation, suggesting a possible involvement of this pathway in mediating some of cN-II roles in cancer cell biology

    Cytosolic 5'-Nucleotidase II Is a Sensor of Energy Charge and Oxidative Stress: A Possible Function as Metabolic Regulator

    Get PDF
    Cytosolic 5'-nucleotidase II (NT5C2) is a highly regulated enzyme involved in the maintenance of intracellular purine and the pyrimidine compound pool. It dephosphorylates mainly IMP and GMP but is also active on AMP. This enzyme is highly expressed in tumors, and its activity correlates with a high rate of proliferation. In this paper, we show that the recombinant purified NT5C2, in the presence of a physiological concentration of the inhibitor inorganic phosphate, is very sensitive to changes in the adenylate energy charge, especially from 0.4 to 0.9. The enzyme appears to be very sensitive to pro-oxidant conditions; in this regard, the possible involvement of a disulphide bridge (C175-C547) was investigated by using a C547A mutant NT5C2. Two cultured cell models were used to further assess the sensitivity of the enzyme to oxidative stress conditions. NT5C2, differently from other enzyme activities, was inactivated and not rescued by dithiothreitol in a astrocytoma cell line (ADF) incubated with hydrogen peroxide. The incubation of a human lung carcinoma cell line (A549) with 2-deoxyglucose lowered the cell energy charge and impaired the interaction of NT5C2 with the ice protease-activating factor (IPAF), a protein involved in innate immunity and inflammation

    Change in stereospecificity of bovine lens aldose reductase modified by oxidative stress.

    Get PDF
    Abstract Bovine lens aldose reductase (alditol:NADP+ oxidoreductase, EC 1.1.1.21) undergoes an oxidative modification, greatly stimulated by high ionic strength, upon incubation in the presence of oxygen radical generating systems (Del Corso, A., Camici, M., and Mura, U. (1987) Biochem. Biophys. Res. Commun. 148, 369-375). The enzyme modification is accompanied by a change in stereospecificity toward the two enantiomers of glyceraldehyde. In particular, the Km for L-glyceraldehyde of the native form increased over 150 times after the enzyme modification, with a decrease in the catalytic efficiency of over 200 times. By contrast, for the D-enantiomer the Km increased only 7 times with respect to the native form, with a concomitant decrease in the catalytic efficiency of only approximately 3 times. This dramatic change in stereospecificity may account for the reported apparent cooperative behavior exhibited also by highly purified electrophoretically homogeneous preparations of aldose reductase
    • …
    corecore