28 research outputs found

    On special quadratic birational transformations of a projective space into a hypersurface

    Full text link
    We study transformations as in the title with emphasis on those having smooth connected base locus, called "special". In particular, we classify all special quadratic birational maps into a quadric hypersurface whose inverse is given by quadratic forms by showing that there are only four examples having general hyperplane sections of Severi varieties as base loci.Comment: Accepted for publication in Rendiconti del Circolo Matematico di Palerm

    An in silico model of the ubiquitin-proteasome system that incorporates normal homeostasis and age-related decline

    Get PDF
    BACKGROUND: The ubiquitin-proteasome system is responsible for homeostatic degradation of intact protein substrates as well as the elimination of damaged or misfolded proteins that might otherwise aggregate. During ageing there is a decline in proteasome activity and an increase in aggregated proteins. Many neurodegenerative diseases are characterised by the presence of distinctive ubiquitin-positive inclusion bodies in affected regions of the brain. These inclusions consist of insoluble, unfolded, ubiquitinated polypeptides that fail to be targeted and degraded by the proteasome. We are using a systems biology approach to try and determine the primary event in the decline in proteolytic capacity with age and whether there is in fact a vicious cycle of inhibition, with accumulating aggregates further inhibiting proteolysis, prompting accumulation of aggregates and so on. A stochastic model of the ubiquitin-proteasome system has been developed using the Systems Biology Mark-up Language (SBML). Simulations are carried out on the BASIS (Biology of Ageing e-Science Integration and Simulation) system and the model output is compared to experimental data wherein levels of ubiquitin and ubiquitinated substrates are monitored in cultured cells under various conditions. The model can be used to predict the effects of different experimental procedures such as inhibition of the proteasome or shutting down the enzyme cascade responsible for ubiquitin conjugation. RESULTS: The model output shows good agreement with experimental data under a number of different conditions. However, our model predicts that monomeric ubiquitin pools are always depleted under conditions of proteasome inhibition, whereas experimental data show that monomeric pools were depleted in IMR-90 cells but not in ts20 cells, suggesting that cell lines vary in their ability to replenish ubiquitin pools and there is the need to incorporate ubiquitin turnover into the model. Sensitivity analysis of the model revealed which parameters have an important effect on protein turnover and aggregation kinetics. CONCLUSION: We have developed a model of the ubiquitin-proteasome system using an iterative approach of model building and validation against experimental data. Using SBML to encode the model ensures that it can be easily modified and extended as more data become available. Important aspects to be included in subsequent models are details of ubiquitin turnover, models of autophagy, the inclusion of a pool of short-lived proteins and further details of the aggregation process

    Evolution of the avian β-defensin and cathelicidin genes

    Get PDF
    Background: β-defensins and cathelicidins are two families of cationic antimicrobial peptides (AMPs) with a broad range of antimicrobial activities that are key components of the innate immune system. Due to their important roles in host defense against rapidly evolving pathogens, the two gene families provide an ideal system for studying adaptive gene evolution. In this study we performed phylogenetic and selection analyses on β-defensins and cathelicidins from 53 avian species representing 32 orders to examine the evolutionary dynamics of these peptides in birds. Results and conclusions: Avian β-defensins are found in a gene cluster consisting of 13 subfamiles. Nine of these are conserved as one to one orthologs in all birds, while the others (AvBD1, AvBD3, AvBD7 and AvBD14) are more subject to gene duplication or pseudogenisation events in specific avian lineages. Avian cathelicidins are found in a gene cluster consisting of three subfamilies with species-specific duplications and gene loss. Evidence suggested that the propiece and mature peptide domains of avian cathelicidins are possibly co-evolving in such a way that the cationicity of the mature peptide is partially neutralised by the negative charge of the propiece prior to peptide secretion (further evidence obtained by repeating the analyses on primate cathelicidins). Negative selection (overall mean d

    Autonomous Pose Estimations for In-Orbit Self-Assembly of Intelligent Self-Powered Modules

    Get PDF
    The ability to autonomously determine the position and attitude of a swarm of satellites is a promising way of assembling Intelligent Self-powered Modules (ISMs) in orbit. This self assembly is guided through simple actuators and sensors and requires fewer resources. A vision based system is used to determine the pose of ISMs attempting docking, through two strategies: Spheroid modeling and feature detection methods. The former technique takes an image of the ISM to reconstruct its position. An additional set of reflectors are placed on each facet to then determine the attitude of the ISM. The attitude algorithms developed are validated for distances up to 30m, with the position determination tested for distances up to 50m. These methods are combined to autonomously estimate the pose of an ISM attempting to dock with a coupled structure of previously launched and connected ISMs

    Pose Estimation for In-Orbit Self-Assembly of Intelligent Self-Powered Modules

    No full text

    Identification of polymorphisms within Disrupted in Schizophrenia 1 and Disrupted in Schizophrenia 2, and an investigation of their association with schizophrenia and bipolar affective disorder

    No full text
    We have undertaken a search for polymorphic sequence variation within Disrupted in Schizophrenia I and Disrupted in Schizophrenia 2 (DISC1 and DISC2), which are both novel genes that span a translocation breakpoint strongly associated with schizophrenia and related psychoses in a large Scottish family. A scan of the coding sequence, intron/exon boundaries, and part of the 5' and 3' untranslated regions of DISC1, plus 2.7 kb at the 3' end of DISC2, has revealed a novel microsatellite and 15 novel single nucleotide polymorphisms (SNPs). We have tracked the inheritance of four of the SNPs through multiply affected families, and carried out case-control association studies using the microsatellite and four common SNPs on populations of patients with schizophrenia or bipolar affective disorder versus normal control subjects. Neither co-segregation with disease status nor significant association was detected; however, we could not detect linkage disequilibrium between all these markers in the control population, arguing that an even greater density of informative markers is required to test rigorously for association in this genomic region. Psychiatr Genet 11:71-78 (C) 2001 Lippincott Williams & Wilkins

    The Arabidopsis F-box protein TIR1 is an auxin receptor

    No full text
    Despite 100 years of evidence showing a pivotal role for indole-3-acetic acid (IAA or auxin) in plant development, the mechanism of auxin perception has remained elusive. Central to auxin response are changes in gene expression, brought about by auxin-induced interaction between the Aux/IAA transcriptional repressor proteins and the ubiquitin–ligase complex SCFTIR1, thus targeting for them proteolysis. Regulated SCF-mediated protein degradation is a widely occurring signal transduction mechanism. Target specificity is conferred by the F-box protein subunit of the SCF (TIR1 in the case of Aux/IAAs) and there are multiple F-box protein genes in all eukaryotic genomes examined so far. Although SCF–target interaction is usually regulated by signal-induced modification of the target, we have previously shown that auxin signalling involves the modification of SCFTIR1. Here we show that this modification involves the direct binding of auxin to TIR1 and thus that TIR1 is an auxin receptor mediating transcriptional responses to auxin
    corecore