385 research outputs found
Nearly degenerate neutrinos, Supersymmetry and radiative corrections
If neutrinos are to play a relevant cosmological role, they must be
essentially degenerate with a mass matrix of the bimaximal mixing type. We
study this scenario in the MSSM framework, finding that if neutrino masses are
produced by a see-saw mechanism, the radiative corrections give rise to mass
splittings and mixing angles that can accommodate the atmospheric and the
(large angle MSW) solar neutrino oscillations. This provides a natural origin
for the hierarchy. On the other hand,
the vacuum oscillation solution to the solar neutrino problem is always
excluded. We discuss also in the SUSY scenario other possible effects of
radiative corrections involving the new neutrino Yukawa couplings, including
implications for triviality limits on the Majorana mass, the infrared fixed
point value of the top Yukawa coupling, and gauge coupling and bottom-tau
unification.Comment: 32 pages, 12 Postscript figures, uses psfig.st
An accelerated closed universe
We study a model in which a closed universe with dust and quintessence matter
components may look like an accelerated flat Friedmann-Robertson-Walker (FRW)
universe at low redshifts. Several quantities relevant to the model are
expressed in terms of observed density parameters, and
, and of the associated density parameter related
to the quintessence scalar field .Comment: 11 pages. For a festschrift honoring Alberto Garcia. To appear in
Gen. Rel. Gra
SO(3) Gauge Symmetry and Neutrino-Lepton Flavor Physics
Based on the SO(3) gauge symmetry for three family leptons and general
see-saw mechanism, we present a simple scheme that allows three nearly
degenerate Majorana neutrino masses needed for hot dark matter. The vacuum
structure of the spontaneous SO(3) symmetry breaking can automatically lead to
a maximal CP-violating phase. Thus the current neutrino data on both the
atmospheric neutrino anomaly and solar neutrino deficit can be accounted for
via maximal mixings without conflict with the current data on the neutrinoless
double beta decay. The model also allows rich interesting phenomena on lepton
flavor violations.Comment: 10 pages, Revtex, no figures, minor changes and references added, the
version to appear in Phys. Rev.
Wormholes and Ringholes in a Dark-Energy Universe
The effects that the present accelerating expansion of the universe has on
the size and shape of Lorentzian wormholes and ringholes are considered. It is
shown that, quite similarly to how it occurs for inflating wormholes, relative
to the initial embedding-space coordinate system, whereas the shape of the
considered holes is always preserved with time, their size is driven by the
expansion to increase by a factor which is proportional to the scale factor of
the universe. In the case that dark energy is phantom energy, which is not
excluded by present constraints on the dark-energy equation of state, that size
increase with time becomes quite more remarkable, and a rather speculative
scenario is here presented where the big rip can be circumvented by future
advanced civilizations by utilizing sufficiently grown up wormholes and
ringholes as time machines that shortcut the big-rip singularity.Comment: 11 pages, RevTex, to appear in Phys. Rev.
Naturalness of nearly degenerate neutrinos
If neutrinos are to play a relevant cosmological role, they must be
essentially degenerate. We study whether radiative corrections can or cannot be
responsible for the small mass splittings, in agreement with all the available
experimental data. We perform an exhaustive exploration of the bimaximal mixing
scenario, finding that (i) the vacuum oscillations solution to the solar
neutrino problem is always excluded; (ii) if the mass matrix is produced by a
see-saw mechanism, there are large regions of the parameter space consistent
with the large angle MSW solution, providing a natural origin for the hierarchy; (iii) the bimaximal structure becomes
then stable under radiative corrections. We also provide analytical expressions
for the mass splittings and mixing angles and present a particularly simple
see-saw ansatz consistent with all observations.Comment: 25 pages, LaTeX, 6 ps figures, psfig.sty. Typos, references and minor
details corrected. Additional condition for the MSW mechanism incorporated.
New viable textures adde
Solar Wakes of Dark Matter Flows
We analyze the effect of the Sun's gravitational field on a flow of cold dark
matter (CDM) through the solar system in the limit where the velocity
dispersion of the flow vanishes. The exact density and velocity distributions
are derived in the case where the Sun is a point mass. The results are extended
to the more realistic case where the Sun has a finite size spherically
symmetric mass distribution. We find that regions of infinite density, called
caustics, appear. One such region is a line caustic on the axis of symmetry,
downstream from the Sun, where the flow trajectories cross. Another is a
cone-shaped caustic surface near the trajectories of maximum scattering angle.
The trajectories forming the conical caustic pass through the Sun's interior
and probe the solar mass distribution, raising the possibility that the solar
mass distribution may some day be measured by a dark matter detector on Earth.
We generalize our results to the case of flows with continuous velocity
distributions, such as that predicted by the isothermal model of the Milky Way
halo.Comment: 30 pages, 8 figure
Potential for Supernova Neutrino Detection in MiniBooNE
The MiniBooNE detector at Fermilab is designed to search for oscillation appearance at and to make a
decisive test of the LSND signal. The main detector (inside a veto shield) is a
spherical volume containing 0.680 ktons of mineral oil. This inner volume,
viewed by 1280 phototubes, is primarily a \v{C}erenkov medium, as the
scintillation yield is low. The entire detector is under a 3 m earth
overburden. Though the detector is not optimized for low-energy (tens of MeV)
events, and the cosmic-ray muon rate is high (10 kHz), we show that MiniBooNE
can function as a useful supernova neutrino detector. Simple trigger-level cuts
can greatly reduce the backgrounds due to cosmic-ray muons. For a canonical
Galactic supernova at 10 kpc, about 190 supernova
events would be detected. By adding MiniBooNE to the international network of
supernova detectors, the possibility of a supernova being missed would be
reduced. Additionally, the paths of the supernova neutrinos through Earth will
be different for MiniBooNE and other detectors, thus allowing tests of
matter-affected mixing effects on the neutrino signal.Comment: Added references, version to appear in PR
Limits on the gravity wave contribution to microwave anisotropies
We present limits on the fraction of large angle microwave anisotropies which
could come from tensor perturbations. We use the COBE results as well as
smaller scale CMB observations, measurements of galaxy correlations, abundances
of galaxy clusters, and Lyman alpha absorption cloud statistics. Our aim is to
provide conservative limits on the tensor-to-scalar ratio for standard
inflationary models. For power-law inflation, for example, we find T/S<0.52 at
95% confidence, with a similar constraint for phi^p potentials. However, for
models with tensor amplitude unrelated to the scalar spectral index it is still
currently possible to have T/S>1.Comment: 23 pages, 7 figures, accepted for publication in Phys. Rev. D.
Calculations extended to blue spectral index, Fig. 6 added, discussion of
results expande
Four Light Neutrinos in Singular Seesaw Mechanism with Abelian Flavor Symmetry
The four light neutrino scenario, which explains the atmosphere, solar and
LSND neutrino experiments, is studied in the framework of the seesaw mechanism.
By taking both the Dirac and Majorana mass matrix of neutrinos to be singular,
the four neutrino mass spectrum consisting of two almost degenerate pairs
separated by a mass gap eV is naturally generated. Moreover the
right-handed neutrino Majorana mass can be at GeV scale unlike
in the usual singular seesaw mechanism. Abelian flavor symmetry is used to
produce the required neutrino mass pattern. A specific example of the flavor
charge assignment is provided to show that maximal mixings between the
and are respectively attributed to the
atmosphere and solar neutrino anomalies while small mixing between two pairs to
the LSND results. The implication in the other fermion masses is also
discussed.Comment: Firnal version to appear in PR
Inhomogeneous cosmologies with Q-matter and varying
Starting from the inhomogeneous shear--free Nariai metric we show, by solving
the Einstein--Klein--Gordon field equations, how a self--interacting scalar
field plus a material fluid, a variable cosmological term and a heat flux can
drive the universe to its currently observed state of homogeneous accelerated
expansion. A quintessence scenario where power-law inflation takes place for a
string-motivated potential in the late--time dominated field regime is
proposed.Comment: 11 pages, Revtex. To be published in Physical Review
- …
