16 research outputs found
Water flux estimates from a Belgian Scots pine stand: a comparison of different approaches
Sazonalidade do Balanço de Energia e Evapotranspiração em Área Arbustiva Alagável no Pantanal Mato-Grossense
Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study
Introduction:
The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures.
Methods:
In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025.
Findings:
Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation.
Interpretation:
After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification.
Funding:
UK Research and Innovation and National Institute for Health Research
In vivo controlled release of PGE2 from a vaginal insert (0.8 mm, 10 mg) during induction of labour
Scaling of metabolic rate with body mass and temperature in teleost fish
1. We examined published studies relating resting oxygen consumption to body mass and temperature in post-larval teleost fish. The resulting database comprised 138 studies of 69 species (representing 28 families and 12 orders) living over a temperature range of c. 40 °C.
2. Resting metabolic rate (Rb; mmol oxygen gas h–1) was related to body mass (M; wet mass, g) by Rb = aMb, where a is a constant and b the scaling exponent. The model was fitted by least squares linear regression after logarithmic transformation of both variables. The mean value of scaling exponent, b, for the 69 individual species was 0·79 (SE 0·11). The general equation for all teleost fish was 1nRb = 0·80(1nM) – 5·43.
3. The relationship between resting oxygen consumption and environmental temperature for a 50-g fish was curvilinear. A typical tropical fish at 30°C requires approximately six times as much oxygen for resting metabolism as does a polar fish at 0°C. This relationship could be fitted by several statistical models, of which the Arrhenius model is probably the most appropriate. The Arrhenius model for the resting metabolism of 69 species of teleost fish, corrected to a standard body mass of 50 g, was 1nRb = 15·7 – 5·02.T–1, where T is absolute temperature (103 × K).
4. The Arrhenius model fitted to all 69 species exhibited a lower thermal sensitivity of resting metabolism (mean Q10 = 1·83 over the range 0–30 °C) than typical within-species acclimation studies (median Q10 = 2·40, n = 14). This suggests that evolutionary adaptation has reduced the overall thermal sensitivity of resting metabolism across species. Analysis of covariance indicated that the relationships between resting metabolic rate and temperature for various taxa (orders) showed similar slopes but significantly different mean rates.
5. Analysis of the data for perciform fish provided no support for metabolic cold adaptation (the hypothesis that polar fish show a resting metabolic rate higher than predicted from the overall rate/temperature relationship established for temperate and tropical species).
6. Taxonomic variation in mean resting metabolic rate showed no relationship to phylogeny, although the robustness of this conclusion is constrained by our limited knowledge of fish evolutionary history
