1,937 research outputs found
Majorana Fermions Signatures in Macroscopic Quantum Tunneling
Thermodynamic measurements of magnetic fluxes and I-V characteristics in
SQUIDs offer promising paths to the characterization of topological
superconducting phases. We consider the problem of macroscopic quantum
tunneling in an rf-SQUID in a topological superconducting phase. We show that
the topological order shifts the tunneling rates and quantum levels, both in
the parity conserving and fluctuating cases. The latter case is argued to
actually enhance the signatures in the slowly fluctuating limit, which is
expected to take place in the quantum regime of the circuit. In view of recent
advances, we also discuss how our results affect a -junction loop.Comment: 10 pages, 11 figure
Single-Spin Measurement and Decoherence in Magnetic Resonance Force Microscopy
We consider a simple version of a cyclic adiabatic inversion (CAI) technique
in magnetic resonance force microscopy (MRFM). We study the problem: What
component of the spin is measured in the CAI MRFM? We show that the
non-destructive detection of the cantilever vibrations provides a measurement
of the spin component along the effective magnetic field. This result is based
on numerical simulations of the Hamiltonian dynamics (the Schrodinger equation)
and the numerical solution of the master equation.Comment: 5 pages + 5 figures (PNG format
Measurement induced quantum-classical transition
A model of an electrical point contact coupled to a mechanical system
(oscillator) is studied to simulate the dephasing effect of measurement on a
quantum system. The problem is solved at zero temperature under conditions of
strong non-equilibrium in the measurement apparatus. For linear coupling
between the oscillator and tunneling electrons, it is found that the oscillator
dynamics becomes damped, with the effective temperature determined by the
voltage drop across the junction. It is demonstrated that both the quantum
heating and the quantum damping of the oscillator manifest themselves in the
current-voltage characteristic of the point contact.Comment: in RevTex, 1 figure, corrected notatio
Static properties of the dissipative random quantum Ising ferromagnetic chain
We study the zero temperature static properties of dissipative ensembles of
quantum Ising spins arranged on periodic one dimensional finite clusters and on
an infinite chain. The spins interact ferro-magnetically with nearest-neighbour
pure and random couplings. They are subject to a transverse field and coupled
to an Ohmic bath of quantum harmonic oscillators. We analyze the coupled system
using Monte Carlo simulations of the classical two-dimensional counterpart
model. The coupling to the bath enhances the extent of the ordered phase, as
found in mean-field spin-glasses. In the case of finite clusters we show that a
generalization of the Caldeira-Leggett localization transition exists. In the
case of the infinite random chain we study the effect of dissipation on the
transition and the Griffiths phase.Comment: 21 pages, 10 figure
Coherent population trapping in the stochastic limit
A 2-level atom with degenerate ground state interacting with a quantum field
is investigated. We show, that the field drives the state of the atom to a
stationary state, which is non-unique, but depends on the initial state of the
system through some conserved quantities. This non-uniqueness follows from the
degeneracy of the ground state of the atom, and when the ground subspace is
two-dimensional, the family of stationary states will depend on a
one-dimensional parameter. Only one of the stationary states in this family is
a pure state, and this state coincides with the known non-coupled population
trapped state (zero population in the excited level. Another one stationary
state corresponds to an equal weight mixture of the excited level and of the
coupled state.Comment: 13 pages, LaTe
Localization on short-range potentials in dissipative quantum mechanics
In this Letter the problem of the existence of a state localized on a weak
short-range attractive potential in the presence of dissipation is considered.
It is shown that, contrary to the pure quantum case, a localized state is
produced in any number of dimensions, while in low dimensions dissipation leads
to much stronger localization. The results have physical implications for the
dissipative dynamics of objects such as heavy particles in Fermi liquids and
for superconductivity in high- materials.Comment: RevTeX, 4 pages, 1 figure. Published versio
Generation of Superposition States and Charge-Qubit Relaxation Probing in a Circuit
We demonstrate how a superposition of coherent states can be generated for a
microwave field inside a coplanar transmission line coupled to a single
superconducting charge qubit, with the addition of a single classical magnetic
pulse for chirping of the qubit transition frequency. We show how the qubit
dephasing induces decoherence on the field superposition state, and how it can
be probed by the qubit charge detection. The character of the charge qubit
relaxation process itself is imprinted in the field state decoherence profile.Comment: 6 pages, 4 figure
Temperature Dependence of Zero-Bias Resistances of a Single Resistance-Shunted Josephson Junction
Zero-bias resistances of a single resistance-shunted Josephson junction are
calculated as a function of the temperature by means of the path-integral Monte
Carlo method in case a charging energy is comparable with a
Josephson energy . The low-temperature behavior of the zero-bias
resistance changes around , where is
a shunt resistance and . The temperature dependence of the
zero-bias resistance shows a power-law-like behavior whose exponent depends on
. These results are compared with the experiments on
resistance-shunted Josephson junctions
Quantum spin chains with site dissipation
We use Monte Carlo simulations to study chains of Ising- and XY-spins with
dissipation coupling to the site variables. The phase diagram and critical
exponents of the dissipative Ising chain in a transverse magnetic field have
been computed previously, and here we consider a universal ratio of
susceptibilities. We furthermore present the phase diagram and exponents of the
dissipative XY-chain, which exhibits a second order phase transition. All our
results compare well with the predictions from a dissipative field
theory
Specificity and performance evaluation of a novel RNA-FISH probe for the identification of Rhodotorula sp.
To distinguish Rhodotorula sp., from other
microorganisms that produce the same type of alterations on CH materials, proper identification methods must be applied.
RNA-fluorescence and in situ hybridization (RNA-FISH) has the potential to specifically identify the target microorganism
of interest in complex microbial communities (it is based on hybridization of fluorescently-labeled oligonucleotide probes
targeting to specific regions of the ribosomal RNA). Thus, the aim of this study was to design a novel genus specific RNAFISH probe against Rhodotorula sp., and to evaluate its specificity and performance both in silico and experimentally. This
will contribute for facilitating Rhodotorula sp., identification in degraded CH materials by RNA-FISH.This work was co-financed by FCT through PTDC/BBB-IMG/0046/2014 project and SFRH/BPD/100754/2014 grant and by ALT20-03-0246-FEDER-000004-ALENTEJO 2020 project
- …
