1,987 research outputs found
Tentativas de Suicídio em Adolescentes Internados na Unidade de Internamento de Pedopsiquiatria do Centro Hospitalar de Lisboa Central (CHLC) :Janeiro de 2006 a Fevereiro de 2009
Quantum dynamics in single spin measurement
We study the quantum dynamics of a model for the single-spin measurement in
magnetic-resonance force microscopy. We consider an oscillating driven
cantilever coupled with the magnetic moment of the sample. Then, the cantilever
is damped through an external bath and its readout is provided by a radiation
field. Conditions for reliable measurements will be discussed.Comment: 7 pages, 3 figure
Micropropagation of a recalcitrant pine (Pinus pinea L.): An overview of the effects of ectomycorrhizal inoculation
Stone pine (Pinus pinea L.) is an economically important forest species in some regions of Iberian Peninsula. Portugal and Spain have nearly 500,000 ha of stone pine stands, representing 85% of worldwide distribution. The main use of this species is for the production of seeds (pinion) for food industry. In addition to its enormous profitability as a producer of seeds, it has beneficial impact on soil protection, dunes fixation and is a pioneer species particularly for cork and holm oaks degraded ecosystems. Stone pine plantations are today a major source of income for forestry holdings. Investments have targeted breeding, reforestation, forest management and harvesting. The maternal inheritance of desirable characteristics such as cone weight, number of seeds per cone and seed length is considerably high in this species thus encouraging the selection of seeds from “plus” trees. The selected trees have been propagated by grafting and micropropagation. However, grafting generates high variability due to scion-rootstock interaction that varies production levels. The production of clonal plants from selected seeds by micropropagation techniques has advanced very slowly due to the recalcitrance of this species in tissue culture and particularly to adventitious rooting of microshoots. Due to the tremendous importance of developing a reproducible tissue culture method for clonal propagation, a study has been carried out for over a decade to enhance rooting and acclimation. During this period of time, continuous increments in the multiplication rate and rooting frequency were achieved by introducing variations in culture media composition and conditions. Auxins, carbohydrates, light quality and duration, temperature at different concentrations and levels as well as compounds such as coumarin; salicylic acid, polyamines, etc. were tested for induction and expression phases of adventitious rooting. Despite these efforts, microshoots regenerated through organogenesis from mature embryo cotyledons failed to root or to have sustained root growth. At this point, an in vitro co-culture technique of stone pine microshoots with ectomycorrhizal-fungi was introduced to overcome the adventitious root growth cessation in vitro and improve root development during acclimation phase. An overview of the results showing the positive effect of fungal inoculation in promoting root growth in vitro and on plantlet survival during acclimation will be presented. Preliminary results of biochemical signals between Pinus pinea/Pisolithus arhizus during early steps of in vitro culture detected by liquid chromatography-mass spectrometry that might be responsible for the positive effect on root growth will be also presented
Atividade da urease e da arginase em solo de cerrado adicionado a pó de ardósia e cultivado com milho.
Macroscopic Quantum Tunneling of a Domain Wall in a Ferromagnetic Metal
The macroscopic quantum tunneling of a planar domain wall in a ferromagnetic
metal is studied based on the Hubbard model. It is found that the ohmic
dissipation is present even at zero temperature due to the gapless Stoner
excitation, which is the crucial difference from the case of the insulating
magnet. The dissipative effect is calculated as a function of width of the wall
and is shown to be effective in a thin wall and in a weak ferromagnet. The
results are discussed in the light of recent experiments on ferromagnets with
strong anisotropy. PACS numbers:75.60.Ch, 03.65.Sq, 75.10.LpComment: 13page
Atividade das enzimas arginase e urease em solo de cerrado adicionado pó de balão sob cultivo de sorgo.
Localization on short-range potentials in dissipative quantum mechanics
In this Letter the problem of the existence of a state localized on a weak
short-range attractive potential in the presence of dissipation is considered.
It is shown that, contrary to the pure quantum case, a localized state is
produced in any number of dimensions, while in low dimensions dissipation leads
to much stronger localization. The results have physical implications for the
dissipative dynamics of objects such as heavy particles in Fermi liquids and
for superconductivity in high- materials.Comment: RevTeX, 4 pages, 1 figure. Published versio
Quantum master equation descriptions of a nanomechanical resonator coupled to a single-electron transistor
We analyse the quantum dynamics of a nanomechanical resonator coupled to a
normal-state single-electron transistor (SET). Starting from a microscopic
description of the system, we derive a master equation for the SET island
charge and resonator which is valid in the limit of weak electro-mechanical
coupling. Using this master equation we show that, apart from brief transients,
the resonator always behaves like a damped harmonic oscillator with a shifted
frequency and relaxes into a thermal-like steady state. Although the behaviour
remains qualitatively the same, we find that the magnitude of the resonator
damping rate and frequency shift depend very sensitively on the relative
magnitudes of the resonator period and the electron tunnelling time. Maximum
damping occurs when the electrical and mechanical time-scales are the same, but
the frequency shift is greatest when the resonator moves much more slowly than
the island charge. We then derive reduced master equations which describe just
the resonator dynamics. By making slightly different approximations, we obtain
two different reduced master equations for the resonator. Apart from minor
differences, the two reduced master equations give rise to a consistent picture
of the resonator dynamics which matches that obtained from the master equation
including the SET island charge.Comment: 22 pages, 4 figure
Quantum Dissipative Dynamics of the Magnetic Resonance Force Microscope in the Single-Spin Detection Limit
We study a model of a magnetic resonance force microscope (MRFM) based on the
cyclic adiabatic inversion technique as a high-resolution tool to detect single
electron spins. We investigate the quantum dynamics of spin and cantilever in
the presence of coupling to an environment. To obtain the reduced dynamics of
the combined system of spin and cantilever, we use the Feynman-Vernon influence
functional and get results valid at any temperature as well as at arbitrary
system-bath coupling strength. We propose that the MRFM can be used as a
quantum measurement device, i.e., not only to detect the modulus of the spin
but also its direction
Magnetization Relaxation via Quantum and Classical Vortex Motion in a Bose Glass Superconductor
I show that in Bose Glass superconductor with high and at low the
magnetization relaxation (S), dominated by quantum tunneling, is , which crosses over to the conventional classical rate at
higher and lower , with the crossover . I argue
that due to interactions between flux lines there exist three relaxation
regimes, depending on whether ,
corresponding to Strongly-pinned Bose Glass (SBG) with large , Mott
Insulator (MI) with vanishing S, and Weakly-pinned Bose Glass (WBG)
characterized by small . I discuss the effects of interactions on
and focus attention on the recent experiment which is consistently described by
the theory.Comment: 4 pages, self-unpacking uuencoded compressed postscript file with
figures already inside text; to appear in Phys. Rev. Lett.(1995
- …
