915 research outputs found

    Staying adiabatic with unknown energy gap

    Full text link
    We introduce an algorithm to perform an optimal adiabatic evolution that operates without an apriori knowledge of the system spectrum. By probing the system gap locally, the algorithm maximizes the evolution speed, thus minimizing the total evolution time. We test the algorithm on the Landau-Zener transition and then apply it on the quantum adiabatic computation of 3-SAT: The result is compatible with an exponential speed-up for up to twenty qubits with respect to classical algorithms. We finally study a possible algorithm improvement by combining it with the quantum Zeno effect.Comment: 4 pages, 4 figure

    A bosonic Josephson junction controlled by a single trapped ion

    Full text link
    We theoretically investigate the properties of a double-well bosonic Josephson junction coupled to a single trapped ion. We find that the coupling between the wells can be controlled by the internal state of the ion, which can be used for studying mesoscopic entanglement between the two systems and to measure their interaction with high precision. As a particular example we consider a single 87^{87}Rb atom and a small Bose-Einstein condensate controlled by a single 171^{171}Yb+^+ ion. We calculate inter-well coupling rates reaching hundreds of Hz, while the state dependence amounts to tens of Hz for plausible values of the currently unknown s-wave scattering length between the atom and the ion. The analysis shows that it is possible to induce either the self-trapping or the tunneling regime, depending on the internal state of the ion. This enables the generation of large scale ion-atomic wavepacket entanglement within current technology.Comment: 6 pages and 5 figures, including additional material. Accepted for publication in Phys. Rev. Let

    Room temperature Rydberg Single Photon Source

    Full text link
    We present an optimal protocol to implement a room temperature Rydberg single photon source within an experimental setup based on micro cells filled with thermal vapor. The optimization of a pulsed four wave mixing scheme allows to double the effective Rydberg blockade radius as compared to a simple Gaussian pulse scheme, releasing some of the constrains on the geometry of the micro cells. The performance of the optimized protocol is improved by about 70% with respect to the standard protocol.Comment: 5 pages, 6 figure

    Speeding up critical system dynamics through optimized evolution

    Full text link
    The number of defects which are generated on crossing a quantum phase transition can be minimized by choosing properly designed time-dependent pulses. In this work we determine what are the ultimate limits of this optimization. We discuss under which conditions the production of defects across the phase transition is vanishing small. Furthermore we show that the minimum time required to enter this regime is T∼π/ΔT\sim \pi/\Delta, where Δ\Delta is the minimum spectral gap, unveiling an intimate connection between an optimized unitary dynamics and the intrinsic measure of the Hilbert space for pure states. Surprisingly, the dynamics is non-adiabatic, this result can be understood by assuming a simple two-level dynamics for the many-body system. Finally we classify the possible dynamical regimes in terms of the action s=TΔs=T\Delta.Comment: 6 pages, 6 figure

    Violation of Leggett-Garg inequalities in quantum measurements with variable resolution and back-action

    Full text link
    Quantum mechanics violates Leggett-Garg inequalities because the operator formalism predicts correlations between different spin components that would correspond to negative joint probabilities for the outcomes of joint measurements. However, the uncertainty principle ensures that such joint measurements cannot be implemented without errors. In a sequential measurement of the spin components, the resolution and back-action errors of the intermediate measurement can be described by random spin flips acting on an intrinsic joint probability. If the error rates are known, the intrinsic joint probability can be reconstructed from the noisy statistics of the actual measurement outcomes. In this paper, we use the spin-flip model of measurement errors to analyze experimental data on photon polarization obtained with an interferometric setup that allows us to vary the measurement strength and hence the balance between resolution and back-action errors. We confirm that the intrinsic joint probability obtained from the experimental data is independent of measurement strength and show that the same violation of the Leggett-Garg inequality can be obtained for any combination of measurement resolution and back-action.Comment: 17 pages, 7 figure
    • …
    corecore