1,280 research outputs found
Methylation-dependent PAD2 upregulation in multiple sclerosis peripheral blood
Background: Peptidylarginine deiminase 2 (PAD2) and peptidylarginine deiminase 4 (PAD4) are two members of PAD family which are over-expressed in the multiple sclerosis (MS) brain. Through its enzymatic activity PAD2 converts myelin basic protein (MBP) arginines into citrullines - an event that may favour autoimmunity - while peptidylarginine deiminase 4 (PAD4) is involved in chromatin remodelling. Objectives: Our aim was to verify whether an altered epigenetic control of PAD2, as already shown in the MS brain, can be observed in peripheral blood mononuclear cells (PBMCs) of patients with MS since some of these cells also synthesize MBP. Methods: The expression of most suitable reference genes and of PAD2 and PAD4 was assessed by qPCR. Analysis of DNA methylation was performed by bisulfite method. Results: The comparison of PAD2 expression level in PBMCs from patients with MS vs. healthy donors showed that, as well as in the white matter of MS patients, the enzyme is significantly upregulated in affected subjects. Methylation pattern analysis of a CpG island located in the PAD2 promoter showed that over-expression is associated with promoter demethylation. Conclusion: Defective regulation of PAD2 in the periphery, without the immunological shelter of the blood-brain barrier, may contribute to the development of the autoimmune responses in MS
Poly(ADP-ribosyl)ation is involved in the epigenetic control of TET1 gene transcription
TET enzymes are the epigenetic factors involved in the formation of the Sixth DNA base 5-hydroxymethylcytosine, whose deregulation has been associated with tumorigenesis. In particular, TET1 acts as tumor suppressor preventing cell proliferation and tumor metastasis and it has frequently been found down-regulated in cancer. Thus, considering the importance of a tight control of TET1 expression, the epigenetic mechanisms involved in the transcriptional regulation of TET1 gene are here investigated. The involvement of poly(ADP-ribosyl)ation in the control of DNA and histone methylation on TET1 gene was examined. PARP activity is able to positively regulate TET1 expression maintaining a permissive chromatin state characterized by DNA hypomethylation of TET1 CpG island as well as high levels of H3K4 trimethylation. These epigenetic modifications were affected by PAR depletion causing TET1 downregulation and in turn reduced recruitment of TET1 protein on HOXA9 target gene. In conclusion, this work shows that PARP activity is a transcriptional regulator of TET1 gene through the control of epigenetic events and it suggests that deregulation of these mechanisms could account for TET1 repression in cancer
A systematic review on shared biological mechanisms of depression and anxiety in comorbidity with psoriasis, atopic dermatitis, and hidradenitis suppurativa
Background. Mental disorders in comorbidity with chronic skin diseases may worsen disease outcome and patients’ quality of life. We hypothesized the comorbidity of depression, anxiety syndromes, or symptoms as attributable to biological mechanisms that the combined diseases share.
Methods. We conducted a systematic review based on the Preferred Reporting Items for Systematic Review and Meta-Analysis statement searching into PubMed, PsycInfo, and Scopus databases. We examined the literature regarding the comorbidity of psoriasis (Ps), atopic dermatitis (AD), or hidradenitis suppurativa with depression and/or anxiety in adults ≥18 years and the hypothetical shared underlying biological mechanisms.
Results. Sixteen studies were analyzed, mostly regarding Ps and AD. Brain-derived neurotrophic factor/tropomyosin receptor kinase B signaling and nuclear factor kappa-light-chain-enhancer of activated B cells/p38 mitogen-activated protein kinase pathways arose as shared mechanisms in Ps animal models with depression- and/or anxiety-like behaviors. Activated microglia and neuroinflammatory responses emerged in AD depressive models. As to genetic studies, atopicdermatitis patients with comorbid anxiety traits carried the short variant of serotonin transporter and a polymorphism of the human translocator protein gene. A GA genotype of catechol-O-methyltransferase gene was instead associated with Ps. Reduced natural killer cell activity, IL-4, serotonin serum levels, and increased plasma cortisol and IgE levels were hypothesized in comorbid depressive AD patients. In Ps patients with comorbid depression, high serum concentrations of IL-6 and IL-18, as well as IL-17A, were presumed to act as shared inflammatory mechanisms.
Conclusions. Further studies should investigate mental disorders and chronic skin diseases concurrently across patients’ life course and identify their temporal relation and biological correlates. Future research should also identify biological characteristics of individuals at high risk of the comorbid disorders and associated complications
Validation of suitable internal control genes for expression studies in aging.
Quantitative data from experiments of gene expression are often normalized through levels of housekeeping genes transcription by assuming that expression of these genes is highly uniform. This practice is being questioned as it becomes increasingly clear that the level of housekeeping genes expression may vary considerably in certain biological samples. To date, the validation of reference genes in aging has received little attention and suitable reference genes have not yet been defined. Our aim was to evaluate the expression stability of frequently used reference genes in human peripheral blood mononuclear cells with respect to aging. Using quantitative RT-PCR, we carried out an extensive evaluation of five housekeeping genes, i.e. 18s rRNA, ACTB, GAPDH, HPRT1 and GUSB, for stability of expression in samples from donors in the age range 35-74 years. The consistency in the expression stability was quantified on the basis of the coefficient of variation and two algorithms termed geNorm and NormFinder. Our results indicated GUSB be the most suitable transcript and 18s the least for accurate normalization in PBMCs. We also demonstrated that aging is a confounding factor with respect to stability of 18s, HPRT1 and ACTB expression, which were particularly prone to variability in aged donors
331 Models and Bilepton Searches at LHC
Despite being remarkable predictive, the Standard Model leaves unanswered
several important issues, which motivate an ongoing search for its extensions.
One fashionable possibility are the so-called 331 models, where the electroweak
gauge group is extended to . We focus on a minimal
extension which includes vector-like quarks (VLQs) and new gauge bosons,
performing a consistent analysis of the production at LHC of a pair of
doubly-charged bileptons. We include for the first time all the relevant
processes where VLQs contribute, and in particular the associate production
VLQ-bilepton. Finally, we extract the bound on the bilepton mass, 1300
GeV, from a reinterpretation of a recent ATLAS search for doubly-charged Higgs
bosons in multi-lepton final states.Comment: v2: several improvements, results unchange
IL-17 Inhibition: A Valid Therapeutic Strategy in the Management of Hidradenitis Suppurativa
Hidradenitis suppurativa (HS) is a chronic inflammatory skin disease with a significant negative impact on the quality of life of patients. To date, the therapeutic landscape for the management of the disease has been extremely limited, resulting in a profound unmet need. Indeed, adalimumab, an anti-tumor necrosis factor (TNF)-α monoclonal antibody, is the only approved biologic agent for HS, obtaining a therapeutic response in only 50% of HS patients. Numerous clinical trials are currently ongoing to test novel therapeutic targets in HS. The IL-17-mediated cascade is the target of several biologic agents that have shown efficacy and safety in treating moderate-to-severe HS. Both bimekizumab and secukinumab, targeting IL-17 in different manners, have successfully completed phase III trials with promising results; the latter has recently been approved by EMA for the treatment of HS. The aim of this review is to summarize the current state of knowledge concerning the relevant role of IL-17 in HS pathogenesis, highlighting the key clinical evidence of anti-IL-17 agents in the treatment of this disease
Signaling Pathways and Therapeutic Strategies in Advanced Basal Cell Carcinoma
Non-melanoma skin cancers (NMSCs) are the most common human neoplasms world-wide. In detail, basal cell carcinoma (BCC) is the most frequent malignancy in the fair-skinned population. The incidence of BCC remains difficult to assess due to the poor registration practice; however, it has been increasing in the last few years. Approximately, 85% of sporadic BCCs carry mutations in Hedgehog pathway genes, especially in PTCH, SUFU and SMO genes, which lead to the aberrant activation of GLI transcriptional factors, typically silent in cells of adult individuals. The management of advanced BCC (aBCC), both metastatic (mBCC) and locally advanced BCC (laBCC), not candidates for surgical excision or radiotherapy, remains challenging. The discovery of mutations in the Hh signaling pathway has paved the way for the development of Hh pathway inhibiting agents, such as vismodegib and sonidegib, which have represented a breakthrough in the aBCC management. However, the use of these agents is limited by the frequent occurrence of adverse events or the development of drug resistance. In this review, we thoroughly describe the current knowledge regarding the available options for the pharmacological management of aBCCs and provide a forward-looking update on novel therapeutic strategies that could enrich the therapeutic armamentarium of BCC in the near future
Italian Crisis Management in 2020
Approaches to risk analysis, crisis management and resilience enhancement for Critical Infrastructure (CI) Protection will be considered starting from a case study related to the management of the pandemic in Italy. Business continuity and crisis management models for CI are analyzed aiming to deal with complexity and reduce uncertainty relating pandemic and long-time crisis. Furthermore, is presented a methodology highlighting the functioning of the Italian Civil Protection and its systemic nature: a complex apparatus made up of different elements and organizations, which derives from the functioning of different organizational systems in interaction with each other. As a baseline for the coordination management the Augustus Method is considered for its strategical, tactical and operational aspects. One of the main outputs of the research consists in creating a “what if” forecasting model, configured as a visualization of the propagation of negative effects on the supply chain and manpower over time
DNA hydroxymethylation levels are altered in blood cells from Down syndrome persons enrolled in the MARK-AGE project
Down syndrome (DS) is caused by the presence of part or an entire extra copy of chromosome 21, a phenomenon that can cause a wide spectrum of clinically defined phenotypes of the disease. Most of the clinical signs of DS are typical of the ageing process including dysregulation of immune system. Beyond the causative genetic defect, DS persons display epigenetic alterations, particularly aberrant DNA methylation patterns that can contribute to the heterogeneity of the disease. In the present work we investigated the levels of 5-hydroxymethylcytosine (5hmC) and of the TET dioxygenase enzymes, which are involved in DNA demethylation processes and are often deregulated in pathological conditions as well as in ageing. Analyses were carried out on peripheral blood mononuclear cells of DS volunteers enrolled in the context of the MARK-AGE study, a large-scale cross-sectional population study with subjects representing the general population in eight European countries. We observed a decrease of 5hmC, TET1 and other components of the DNA methylation/demethylation machinery in DS subjects, indicating that aberrant DNA methylation patterns in DS, which may have consequences on the transcriptional status of immune cells, may be due to a global disturbance of methylation control in DS
- …