11,870 research outputs found
The Epeak-Eiso plane of long Gamma Ray Bursts and selection effects
We study the distribution of long Gamma Ray Bursts in the Ep-Eiso and in the
Ep,obs-Fluence planes through an updated sample of 76 bursts, with measured
redshift and spectral parameters, detected up to September 2007. We confirm the
existence of a strong rest frame correlation Ep ~ Eiso^0.54+-0.01. Contrary to
previous studies, no sign of evolution with redshift of the Ep-Eiso correlation
(either its slope and normalisation) is found. The 76 bursts define a strong
Ep,obs-Fluence correlation in the observer frame (Ep,obs ~ F^0.32+-0.05) with
redshifts evenly distributed along this correlation. We study possible
instrumental selection effects in the observer frame Ep,obs-Fluence plane. In
particular, we concentrate on the minimum peak flux necessary to trigger a
given GRB detector (trigger threshold) and the minimum fluence a burst must
have to determine the value of Ep,obs (spectral analysis threshold). We find
that the latter dominates in the Ep,obs-Fluence plane over the former. Our
analysis shows, however, that these instrumental selection effects do not
dominate for bursts detected before the launch of the Swift satellite, while
the spectral analysis threshold is the dominant truncation effect of the Swift
GRB sample (27 out of 76 events). This suggests that the Ep,obs-Fluence
correlation defined by the pre--Swift sample could be affected by other, still
not understood, selection effects. Besides we caution about the conclusions on
the existence of the Ep,obs-Fluence correlation based on our Swift sample
alone.Comment: To appear in MNRA
Spectral analysis of Swift long GRBs with known redshift
We study the spectral and energetics properties of 47 long-duration gamma-ray
bursts (GRBs) with known redshift, all of them detected by the Swift satellite.
Due to the narrow energy range (15-150 keV) of the Swift-BAT detector, the
spectral fitting is reliable only for fitting models with 2 or 3 parameters. As
high uncertainty and correlation among the errors is expected, a careful
analysis of the errors is necessary. We fit both the power law (PL, 2
parameters) and cut--off power law (CPL, 3 parameters) models to the
time-integrated spectra of the 47 bursts, and present the corresponding
parameters, their uncertainties, and the correlations among the uncertainties.
The CPL model is reliable only for 29 bursts for which we estimate the nuf_nu
peak energy Epk. For these GRBs, we calculate the energy fluence and the rest-
frame isotropic-equivalent radiated energy, Eiso, as well as the propagated
uncertainties and correlations among them. We explore the distribution of our
homogeneous sample of GRBs on the rest-frame diagram E'pk vs Eiso. We confirm a
significant correlation between these two quantities (the "Amati" relation) and
we verify that, within the uncertainty limits, no outliers are present. We also
fit the spectra to a Band model with the high energy power law index frozen to
-2.3, obtaining a rather good agreement with the "Amati" relation of non-Swift
GRBs.Comment: 16 pages. To appear in MNRAS. Minor changes were introduced in this
last versio
A novel programmable lysozyme-based lysis system in Pseudomonas putida for biopolymer production
IndexaciĂłn: Scopus; Web of Science.Cell lysis is crucial for the microbial production of industrial fatty acids, proteins, biofuels, and biopolymers. In this work, we developed a novel programmable lysis system based on the heterologous expression of lysozyme. The inducible lytic system was tested in two Gram-negative bacterial strains, namely Escherichia coli and Pseudomonas putida KT2440. Before induction, the lytic system did not significantly arrest essential physiological parameters in the recombinant E. coli (ECPi) and P. putida (JBOi) strain such as specific growth rate and biomass yield under standard growth conditions. A different scenario was observed in the recombinant JBOi strain when subjected to PHA-producing conditions, where biomass production was reduced by 25% but the mcl-PHA content was maintained at about 30% of the cell dry weight. Importantly, the genetic construct worked well under PHA-producing conditions (nitrogen-limiting phase), where more than 95% of the cell population presented membrane disruption 16 h post induction, with 75% of the total synthesized biopolymer recovered at the end of the fermentation period. In conclusion, this new lysis system circumvents traditional, costly mechanical and enzymatic cell-disrupting procedures.https://www.nature.com/articles/s41598-017-04741-2.pd
Datasets for transcriptomics, q-proteomics and phenotype microarrays of polyphosphate metabolism mutants from Escherichia coli
Indexación: Scopus.Author acknowledges Fondecyt Grants 1120209, 1121170 and Anillo ACT-1107Here, we provide the dataset associated with our research article on the polyphosphate metabolism entitled, “Multi-level evaluation of Escherichia coli polyphosphate related mutants using global transcriptomic, proteomic and phenomic analyses”. By integrating different omics levels (transcriptome, proteome and phenome), we were able to study Escherichia coli polyphosphate mutant strains (Δppk1, Δppx, and Δppk1-ppx). We have compiled here all datasets from DNA microarrys, q-proteomic (Isotope-Coded Protein Labeling, ICPL) and phenomic (Phenotype microarray) raw data we have obtained in all polyP metabolism mutants.http://www.sciencedirect.com/science/article/pii/S2352340917300860?via%3Dihu
Snake orbits and related magnetic edge states
We study the electron motion near magnetic field steps at which the strength
and/or sign of the magnetic field changes. The energy spectrum for such systems
is found and the electron states (bound and scattered) are compared with their
corresponding classical paths. Several classical properties as the velocity
parallel to the edge, the oscillation frequency perpendicular to the edge and
the extent of the states are compared with their quantum mechanical
counterpart. A class of magnetic edge states is found which do not have a
classical counterpart.Comment: 8 pages, 10 figure
Excitations in the quantum paramagnetic phase of the quasi-one-dimensional Ising magnet CoNbO in a transverse field: Geometric frustration and quantum renormalization effects
The quasi-one-dimensional (1D) Ising ferromagnet CoNbO has recently
been driven via applied transverse magnetic fields through a continuous quantum
phase transition from spontaneous magnetic order to a quantum paramagnet, and
dramatic changes were observed in the spin dynamics, characteristic of weakly
perturbed 1D Ising quantum criticality. We report here extensive single-crystal
inelastic neutron scattering measurements of the magnetic excitations
throughout the three-dimensional (3D) Brillouin zone in the quantum
paramagnetic phase just above the critical field to characterize the effects of
the finite interchain couplings. In this phase, we observe that excitations
have a sharp, resolution-limited line shape at low energies and over most of
the dispersion bandwidth, as expected for spin-flip quasiparticles. We map the
full bandwidth along the strongly dispersive chain direction and resolve clear
modulations of the dispersions in the plane normal to the chains,
characteristic of frustrated interchain couplings in an antiferromagnetic
isosceles triangular lattice. The dispersions can be well parametrized using a
linear spin-wave model that includes interchain couplings and further neighbor
exchanges. The observed dispersion bandwidth along the chain direction is
smaller than that predicted by a linear spin-wave model using exchange values
determined at zero field, and this effect is attributed to quantum
renormalization of the dispersion beyond the spin-wave approximation in fields
slightly above the critical field, where quantum fluctuations are still
significant.Comment: 11 pages, 6 figures. Updated references. Minor changes to text and
figure
Evidence for C and Mg variations in the GD-1 stellar stream
Dynamically cold stellar streams are the relics left over from globular cluster dissolution. These relics offer a unique insight into a now fully disrupted population of ancient clusters in our Galaxy. Using a combination of Gaia eDR3 proper motions, optical and near-UV colours, we select a sample of likely Red Giant Branch stars from the GD-1 stream for medium-low resolution spectroscopic follow-up. Based on radial velocity and metallicity, we are able to find 14 new members of GD-1, 5 of which are associated with the spur and blob/cocoon off-stream features. We measured C-abundances to probe for abundance variations known to exist in globular clusters. These variations are expected to manifest in a subtle way in globular clusters with such low masses (similar to 10(4) M-circle dot) and metallicities ([Fe/H] similar to -2.1 dex). We find that the C-abundances of the stars in our sample display a small but significant (3 sigma level) spread. Furthermore, we find similar to 3 sigma variation in Mg-abundances among the stars in our sample that have been observed by APOGEE. These abundance patterns match the ones found in Galactic globular clusters of similar metallicity. Our results suggest that GD-1 represents another fully disrupted low-mass globular cluster where light-element abundance spreads have been found
Neutron scattering study of a quasi-2D spin-1/2 dimer system Piperazinium Hexachlorodicuprate under hydrostatic pressure
We report inelastic neutron scattering study of a quasi-two-dimensional S=1/2
dimer system Piperazinium Hexachlorodicuprate under hydrostatic pressure. The
spin gap {\Delta} becomes softened with the increase of the hydrostatic
pressure up to P= 9.0 kbar. The observed threefold degenerate triplet
excitation at P= 6.0 kbar is consistent with the theoretical prediction and the
bandwidth of the dispersion relation is unaffected within the experimental
uncertainty. At P= 9.0 kbar the spin gap is reduced to 0.55 meV from 1.0 meV at
ambient pressure.Comment: 4 pages, 5 figure
- …