27 research outputs found

    Apprentissage dans les disques de Poincaré et de Siegel de séries temporelles multidimensionnelles complexes suivant un modèle autorégressif gaussien stationnaire centré : application à la classification de données audio et de fouillis radar

    No full text
    The objective of this thesis is the classification of complex valued stationary centered Gaussian autoregressive time series. We study the case of one-dimensional time series as well as the more general case of multidimensional time series. The contribution of this thesis is both methodological and technical. The methodology presented can be used to represent the probability distributions of the observed time series in a Riemannian manifold in which the classification will be performed. The major steps of our method are: the definition of the space of the coefficients of the parametric model used to represent the considered time series, the estimation of the coefficients of the parametric model from observed time series, to endow the space of the coefficients of the parametric model with a Riemannian metric inspired by information geometry and finally the adaptation of classical machine learning algorithms to the Riemannian manifolds obtained. In the case of multidimensional time series, we will work in a product manifold which involves the Siegel disk (set of complex matrices with singular values strictly lower than 1) endowed with a Riemannian metric. In addition to the methodological contribution mentioned previously, we bring new theoretical tools to classify data in the Siegel manifold: we give the explicit formulas of the Riemannian logarithm map, of the Riemannian exponential map and of the Siegel manifold sectional curvature. Our representation model for complex stationary centered Gaussian autoregressive time series will be applied to simulated time series classification, to radar clutter clustering and to stationary stereo audio time series classification.L’objectif de cette thèse est la classification de séries temporelles à valeurs complexes suivant un modèle autorégressif gaussien stationnaire centré. Nous étudions le cas des séries temporelles unidimensionnelles ainsi que le cas plus général des séries temporelles multidimensionnelles. L'apport de cette thèse est à la fois méthodologique et technique. La méthodologie présentée permet de représenter les lois des séries temporelles observées dans une variété riemannienne dans laquelle la classification sera effectuée. Les étapes majeures de notre méthode sont : la définition de l'espace des coefficients du modèle paramétrique permettant de représenter les séries temporelles considérées, l'estimation des coefficients du modèle paramétrique à partir de séries temporelles observées, munir l'espace des coefficients du modèle paramétrique d'une métrique riemannienne inspirée de la géométrie de l'information et enfin l'adaptation d'algorithmes de machine learning classiques aux variétés riemanniennes obtenues. Dans le cas des séries temporelles multidimensionnelles, nous travaillerons dans un espace produit qui fait intervenir le disque de Siegel (ensemble des matrices complexes de valeurs singulières strictement inférieures à 1) muni d'une métrique riemannienne produit. En plus de l'apport méthodologique évoqué précédemment, nous apportons des outils théoriques nouveaux pour classifier des données dans la variété de Siegel : nous donnons les formules explicites du logarithme riemannien, de l'exponentielle riemannienne et de la courbure sectionnelle de la variété obtenue sur l'espace de Siegel. Notre modèle de représentation des séries temporelles complexes suivant un modèle autorégressif gaussien stationnaire centré sera appliqué à la classification de séries temporelles simulées, au clustering de fouillis radar et à la classification de séries temporelles audio stéréo stationnaires

    Apprentissage dans les disques de Poincaré et de Siegel de séries temporelles multidimensionnelles complexes suivant un modèle autorégressif gaussien stationnaire centré : application à la classification de données audio et de fouillis radar

    No full text
    The objective of this thesis is the classification of complex valued stationary centered Gaussian autoregressive time series.We study the case of one-dimensional time series as well as the more general case of multidimensional time series.The contribution of this thesis is both methodological and technical.The methodology presented can be used to represent the probability distributions of the observed time series in a Riemannian manifold in which the classification will be performed.The major steps of our method are: the definition of the space of the coefficients of the parametric model used to represent the considered time series, the estimation of the coefficients of the parametric model from observed time series, to endow the space of the coefficients of the parametric model with a Riemannian metric coming from information geometry and finally the adaptation of classical machine learning algorithms to the Riemannian manifolds obtained.In the case of multidimensional time series, we will work in a product manifold which involves the Siegel disk (set of complex matrices with singular values strictly lower than 1) endowed with a Riemannian metric.In addition to the methodological contribution mentioned previously, we bring new theoretical tools to classify data in the Siegel manifold: we give the explicit formulas of the Riemannian logarithm map, of the Riemannian exponential map and of the Siegel manifold sectional curvature.Our representation model for complex stationary centered Gaussian autoregressive time series will be applied to simulated time series classification, to radar clutter clustering and to stationary stereo audio time series classification.L’objectif de cette thèse est la classification de séries temporelles à valeurs complexes suivant un modèle autorégressif gaussien stationnaire centré.Nous étudions le cas des séries temporelles unidimensionnelles ainsi que le cas plus général des séries temporelles multidimensionnelles.L'apport de cette thèse est à la fois méthodologique et technique.La méthodologie présentée permet de représenter les lois des séries temporelles observées dans une variété riemannienne dans laquelle la classification sera effectuée.Les étapes majeures de notre méthode sont : la définition de l'espace des coefficients du modèle paramétrique permettant de représenter les séries temporelles considérées, l'estimation des coefficients du modèle paramétrique à partir de séries temporelles observées, munir l'espace des coefficients du modèle paramétrique d'une métrique riemannienne issue de la géométrie de l'information et enfin l'adaptation d'algorithmes de machine learning classiques aux variétés riemanniennes obtenues.Dans le cas des séries temporelles multidimensionnelles, nous travaillerons dans un espace produit qui fait intervenir le disque de Siegel (ensemble des matrices complexes de valeurs singulières strictement inférieures à 1) muni d'une métrique riemannienne produit.En plus de l'apport méthodologique évoqué précédemment, nous apportons des outils théoriques nouveaux pour classifier des données dans la variété de Siegel : nous donnons les formules explicites du logarithme riemannien, de l'exponentielle riemannienne et de la courbure sectionnelle de la variété obtenue sur l'espace de Siegel.Notre modèle de représentation des séries temporelles complexes suivant un modèle autorégressif gaussien stationnaire centré sera appliqué à la classification de séries temporelles simulées, au clustering de fouillis radar et à la classification de séries temporelles audio stéréo stationnaires

    Multidimensional complex stationary centered Gaussian autoregressive time series machine learning in Poincaré and Siegel disks : application for audio and radar clutter classification

    No full text
    L’objectif de cette thèse est la classification de séries temporelles à valeurs complexes suivant un modèle autorégressif gaussien stationnaire centré.Nous étudions le cas des séries temporelles unidimensionnelles ainsi que le cas plus général des séries temporelles multidimensionnelles.L'apport de cette thèse est à la fois méthodologique et technique.La méthodologie présentée permet de représenter les lois des séries temporelles observées dans une variété riemannienne dans laquelle la classification sera effectuée.Les étapes majeures de notre méthode sont : la définition de l'espace des coefficients du modèle paramétrique permettant de représenter les séries temporelles considérées, l'estimation des coefficients du modèle paramétrique à partir de séries temporelles observées, munir l'espace des coefficients du modèle paramétrique d'une métrique riemannienne issue de la géométrie de l'information et enfin l'adaptation d'algorithmes de machine learning classiques aux variétés riemanniennes obtenues.Dans le cas des séries temporelles multidimensionnelles, nous travaillerons dans un espace produit qui fait intervenir le disque de Siegel (ensemble des matrices complexes de valeurs singulières strictement inférieures à 1) muni d'une métrique riemannienne produit.En plus de l'apport méthodologique évoqué précédemment, nous apportons des outils théoriques nouveaux pour classifier des données dans la variété de Siegel : nous donnons les formules explicites du logarithme riemannien, de l'exponentielle riemannienne et de la courbure sectionnelle de la variété obtenue sur l'espace de Siegel.Notre modèle de représentation des séries temporelles complexes suivant un modèle autorégressif gaussien stationnaire centré sera appliqué à la classification de séries temporelles simulées, au clustering de fouillis radar et à la classification de séries temporelles audio stéréo stationnaires.The objective of this thesis is the classification of complex valued stationary centered Gaussian autoregressive time series.We study the case of one-dimensional time series as well as the more general case of multidimensional time series.The contribution of this thesis is both methodological and technical.The methodology presented can be used to represent the probability distributions of the observed time series in a Riemannian manifold in which the classification will be performed.The major steps of our method are: the definition of the space of the coefficients of the parametric model used to represent the considered time series, the estimation of the coefficients of the parametric model from observed time series, to endow the space of the coefficients of the parametric model with a Riemannian metric coming from information geometry and finally the adaptation of classical machine learning algorithms to the Riemannian manifolds obtained.In the case of multidimensional time series, we will work in a product manifold which involves the Siegel disk (set of complex matrices with singular values strictly lower than 1) endowed with a Riemannian metric.In addition to the methodological contribution mentioned previously, we bring new theoretical tools to classify data in the Siegel manifold: we give the explicit formulas of the Riemannian logarithm map, of the Riemannian exponential map and of the Siegel manifold sectional curvature.Our representation model for complex stationary centered Gaussian autoregressive time series will be applied to simulated time series classification, to radar clutter clustering and to stationary stereo audio time series classification

    Multidimensional complex stationary centered Gaussian autoregressive time series machine learning in Poincaré and Siegel disks : application for audio and radar clutter classification

    No full text
    L’objectif de cette thèse est la classification de séries temporelles à valeurs complexes suivant un modèle autorégressif gaussien stationnaire centré.Nous étudions le cas des séries temporelles unidimensionnelles ainsi que le cas plus général des séries temporelles multidimensionnelles.L'apport de cette thèse est à la fois méthodologique et technique.La méthodologie présentée permet de représenter les lois des séries temporelles observées dans une variété riemannienne dans laquelle la classification sera effectuée.Les étapes majeures de notre méthode sont : la définition de l'espace des coefficients du modèle paramétrique permettant de représenter les séries temporelles considérées, l'estimation des coefficients du modèle paramétrique à partir de séries temporelles observées, munir l'espace des coefficients du modèle paramétrique d'une métrique riemannienne issue de la géométrie de l'information et enfin l'adaptation d'algorithmes de machine learning classiques aux variétés riemanniennes obtenues.Dans le cas des séries temporelles multidimensionnelles, nous travaillerons dans un espace produit qui fait intervenir le disque de Siegel (ensemble des matrices complexes de valeurs singulières strictement inférieures à 1) muni d'une métrique riemannienne produit.En plus de l'apport méthodologique évoqué précédemment, nous apportons des outils théoriques nouveaux pour classifier des données dans la variété de Siegel : nous donnons les formules explicites du logarithme riemannien, de l'exponentielle riemannienne et de la courbure sectionnelle de la variété obtenue sur l'espace de Siegel.Notre modèle de représentation des séries temporelles complexes suivant un modèle autorégressif gaussien stationnaire centré sera appliqué à la classification de séries temporelles simulées, au clustering de fouillis radar et à la classification de séries temporelles audio stéréo stationnaires.The objective of this thesis is the classification of complex valued stationary centered Gaussian autoregressive time series.We study the case of one-dimensional time series as well as the more general case of multidimensional time series.The contribution of this thesis is both methodological and technical.The methodology presented can be used to represent the probability distributions of the observed time series in a Riemannian manifold in which the classification will be performed.The major steps of our method are: the definition of the space of the coefficients of the parametric model used to represent the considered time series, the estimation of the coefficients of the parametric model from observed time series, to endow the space of the coefficients of the parametric model with a Riemannian metric coming from information geometry and finally the adaptation of classical machine learning algorithms to the Riemannian manifolds obtained.In the case of multidimensional time series, we will work in a product manifold which involves the Siegel disk (set of complex matrices with singular values strictly lower than 1) endowed with a Riemannian metric.In addition to the methodological contribution mentioned previously, we bring new theoretical tools to classify data in the Siegel manifold: we give the explicit formulas of the Riemannian logarithm map, of the Riemannian exponential map and of the Siegel manifold sectional curvature.Our representation model for complex stationary centered Gaussian autoregressive time series will be applied to simulated time series classification, to radar clutter clustering and to stationary stereo audio time series classification

    APPROACHING THE TWO INFINITE BY ELECTROMAGNETIC WAVES ELEMENTARY GEOMETRIC STRUCTURES OF DIGITAL ELECTROMAGNETIC INFORMATION Statistical characterization of the digital measurement of spatio-Doppler and polarimetric fluctuations of the radar electromagnetic wave

    No full text
    Il s'agit de décrire de nouvelles approches géométriques pour définir les statistiques de mesures spatio-temporelles et polarimétrique des états d'une onde électromagnétique, en utilisant les travaux de Maurice Fréchet, Jean-Louis Koszul et Jean-Marie Souriau, avec en particulier la notion d'état « moyen » de cette mesure digitale comme barycentre de Fréchet dans un espace métrique et un modèle issu de la mécanique statistique pour définir et calculer une densité à maximum d'entropie (extension de la notion de gaussienne) pour décrire les fluctuations de l'onde électromagnétique. L'article illustrera ces outils nouveaux avec des exemples d'application en radar pour la mesure Doppler, spatio-temporelle et polarimétrique de l'onde électromagnétique en introduisant une distance sur les matrices de covariance du signal digital électromagnétique, basé sur la métrique de Fisher issue de la Géométrie de l'Information.The aim is to describe new geometric approaches to define the statistics of spatio-temporal and polarimetric measurements of the states of an electromagnetic wave, using the works of Maurice Fréchet, Jean-Louis Koszul and Jean-Marie Souriau, with in particular the notion of 'average' state of this digital measurement as a Fréchet barycentre in a metric space and a model derived from statistical mechanics to define and calculate a maximum density of entropy (extension of the notion of Gaussian) to describe the fluctuations of the electromagnetic wave. The article will illustrate these new tools with examples of radar application for Doppler, spatio-temporal and polarimetric measurement of the electromagnetic wave by introducing a distance on the covariance matrices of the electromagnetic digital signal, based on Fisher’s metric from Information Geometry

    Unsupervised Machine Learning for Pathological Radar Clutter Clustering: the P-Mean-Shift Algorithm

    No full text
    This paper deals with unsupervised radar clutter clustering to characterize pathological clutter based on their Doppler fluctuations. Operationally, being able to recognize pathological clutter environments may help to tune radar parameters to regulate the false alarm rate. This request will be more important for new generation radars that will be more mobile and should process data on the move. We first introduce the radar data structure and explain how it can be coded by Toeplitz covariance matrices. We then introduce the manifold of Toeplitz co-variance matrices and the associated metric coming from information geometry. We have adapted the classical k-means algorithm to the Riemaniann manifold of Toeplitz covariance matrices in [1], [2]; the mean-shift algorithm is presented in [3], [4]. We present here a new clustering algorithm based on the p-mean definition in a Riemannian manifold and the mean-shift algorithm

    Lectures vertes : des romans jeunesses aux philosophies écologistes (2019)

    No full text
    Depuis plusieurs années, les rayons "écologie" ou "environnement" fleurissent dans les librairies. Cette littérature a connu de vrais succès de ventes autour d'auteurs comme Pierre Rabhi ou, plus récemment, Pablo Servigne. Des noms souvent cités par les manifestants pour le climat interrogés sur leurs lectures "écologistes". Plus inattendus, certains romans jeunesse comme "Tobie Lolness" ou "La Quête des ours" sont aussi mentionnés par les militants. Ces derniers, nénanmoins, sont peu nombreux à déclarer lire des livres en lien avec leur lutte, faute de savoir "par où commencer"

    Non-Supervised High Resolution Doppler Machine Learning for Pathological Radar Clutter

    No full text
    In this paper we propose a method to classify radar clutter from radar data using a non-supervised classification algorithm. As a final objective, new radars will therefore be able to use the experience of other radars to improve their performances: learning pathological radar clutter can be used to fix some false alarm rate created by strong echoes coming from hail, rain, waves, mountains, cities; it will also improve the detectability of slow moving targets, like drones, which can be hidden in the clutter, flying close to the landform

    Matrix Extension for Pathological Radar Clutter Machine Learning

    No full text
    This paper deals with radar clutter statistical learning based on spatial Doppler fluctuation. In articles [1]-[4], data is clustered cell by cell. In this article, we generalize the previous model to extract information not only from each cell independently, but also from the cells spatial correlation. We first introduce the radar data, then the model and efficient tools to estimate the model parameters. The model parameters will be shown to be Hermitian Positive Definite Block-Toeplitz matrices. Next we endow the manifold of Hermitian Positive Definite Block-Toeplitz matrices with a Riemannian metric coming from information geometry. Finally, we adapt a supervised classification algorithm (the k-Nearest Neighbors) and an unsupervised classification algorithm (the Agglomerative Hierarchical Clustering) to this Riemannian manifold
    corecore