1,413 research outputs found

    Harnessing oscillatory fluid behaviour to improve debris wash-out in ureteroscopy

    Get PDF
    In ureteroscopy, a common method for kidney stone removal, a ureteroscope is inserted into the patient’s kidney, through which working tools such as a laser are inserted. During the procedure, the renal space proximal to the scope tip is irrigated with fluid in order to clear stone particles and debris. However, even with continual fluid flow into and out of the kidney, stone dust may become trapped in vortical structures, significantly impairing the operating clinician’s field of view. Key to overcoming this challenge is a clear understanding of the flow patterns within an irrigated kidney calyx, and a modelling framework that enables to interrogate how different flow conditions impact on the wash-out time of debris. Previous theoretical studies have uncovered the interplay between fluid structure, in particular the presence of vortical regions, and dust washout, but only in a regime of steady inlet flow conditions. In this paper we model a kidney calyx in an idealised 2D cavity geometry, in which we investigate the presence and potential disturbance of vortical structures due to an oscillatory inlet condition, and the impact on dust washout, modelled as a passive tracer in the flow. By varying the flow amplitude and frequency at the inlet, we uncover a delicate relationship with vortex size and vortex disturbance, and we demonstrate the potential for significant decrease in wash-out time with low-frequency high-amplitude conditions. We then compare this result to the commonly used practice of flushing, a discrete and temporary increase in flow, and we also demonstrate the qualitative robustness of our findings to changes in cavity geometry

    Congenital isolated right radial club hand

    Get PDF
    Congenital radial club hand (RCH) is an uncommon congenital anomaly characterized by various degrees of deficiency along the preaxial or radial side of the extremity. We present one such case of Type 4 congenital isolated RCH who presented to a tertiary care center in the Middle East

    Two populations of X-ray pulsars produced by two types of supernovae

    No full text
    Two types of supernova are thought to produce the overwhelming majority of neutron stars in the Universe. The first type, iron-core collapse supernovae, occurs when a high-mass star develops a degenerate iron core that exceeds the Chandrasekhar limit. The second type, electron-capture supernovae, is associated with the collapse of a lower-mass oxygen-neon-magnesium core as it loses pressure support owing to the sudden capture of electrons by neon and/or magnesium nuclei. It has hitherto been impossible to identify the two distinct families of neutron stars produced in these formation channels. Here we report that a large, well-known class of neutron-star-hosting X-ray pulsars is actually composed of two distinct sub-populations with different characteristic spin periods, orbital periods and orbital eccentricities. This class, the Be/X-ray binaries, contains neutron stars that accrete material from a more massive companion star. The two sub-populations are most probably associated with the two distinct types of neutron-star-forming supernovae, with electron-capture supernovae preferentially producing system with short spin period, short orbital periods and low eccentricity. Intriguingly, the split between the two sub-populations is clearest in the distribution of the logarithm of spin period, a result that had not been predicted and which still remains to be explaine

    Outcomes of COVID-19 related hospitalization among people with HIV in the ISARIC WHO Clinical Characterization Protocol (UK): a prospective observational study

    Get PDF
    BACKGROUND: Evidence is conflicting about how HIV modulates COVID-19. We compared the presentation characteristics and outcomes of adults with and without HIV who were hospitalized with COVID-19 at 207 centers across the United Kingdom and whose data were prospectively captured by the ISARIC WHO CCP study. METHODS: We used Kaplan-Meier methods and Cox regression to describe the association between HIV status and day-28 mortality, after separate adjustment for sex, ethnicity, age, hospital acquisition of COVID-19 (definite hospital acquisition excluded), presentation date, ten individual comorbidities, and disease severity at presentation (as defined by hypoxia or oxygen therapy). RESULTS: Among 47,592 patients, 122 (0.26%) had confirmed HIV infection and 112/122 (91.8%) had a record of antiretroviral therapy. At presentation, HIV-positive people were younger (median 56 versus 74 years; p<0.001) and had fewer comorbidities, more systemic symptoms and higher lymphocyte counts and C-reactive protein levels. The cumulative day-28 mortality was similar in the HIV-positive vs. HIV-negative groups (26.7% vs. 32.1%; p=0.16), but in those under 60 years of age HIV-positive status was associated with increased mortality (21.3% vs. 9.6%; p<0.001 [log-rank test]). Mortality was higher among people with HIV after adjusting for age (adjusted hazard ratio [aHR] 1.47, 95% confidence interval [CI] 1.01-2.14; p=0.05), and the association persisted after adjusting for the other variables (aHR 1.69; 95% CI 1.15-2.48; p=0.008) and when restricting the analysis to people aged <60 years (aHR 2.87; 95% CI 1.70-4.84; p<0.001). CONCLUSIONS: HIV-positive status was associated with an increased risk of day-28 mortality among patients hospitalized for COVID-19

    Prime movers : mechanochemistry of mitotic kinesins

    Get PDF
    Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation
    corecore