25 research outputs found

    Breathing adapted radiotherapy: a 4D gating software for lung cancer

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>Physiological respiratory motion of tumors growing in the lung can be corrected with respiratory gating when treated with radiotherapy (RT). The optimal respiratory phase for beam-on may be assessed with a respiratory phase optimizer (RPO), a 4D image processing software developed with this purpose.</p> <p>Methods and Materials</p> <p>Fourteen patients with lung cancer were included in the study. Every patient underwent a 4D-CT providing ten datasets of ten phases of the respiratory cycle (0-100% of the cycle). We defined two morphological parameters for comparison of 4D-CT images in different respiratory phases: tumor-volume to lung-volume ratio and tumor-to-spinal cord distance. The RPO automatized the calculations (200 per patient) of these parameters for each phase of the respiratory cycle allowing to determine the optimal interval for RT.</p> <p>Results</p> <p>Lower lobe lung tumors not attached to the diaphragm presented with the largest motion with breathing. Maximum inspiration was considered the optimal phase for treatment in 4 patients (28.6%). In 7 patients (50%), however, the RPO showed a most favorable volumetric and spatial configuration in phases other than maximum inspiration. In 2 cases (14.4%) the RPO showed no benefit from gating. This tool was not conclusive in only one case.</p> <p>Conclusions</p> <p>The RPO software presented in this study can help to determine the optimal respiratory phase for gated RT based on a few simple morphological parameters. Easy to apply in daily routine, it may be a useful tool for selecting patients who might benefit from breathing adapted RT.</p

    Organometallic indolo[3,2-c]quinolines versus indolo[3,2-d]benzazepines: synthesis, structural and spectroscopic characterization, and biological efficacy

    Get PDF
    The synthesis of ruthenium(II) and osmium(II) arene complexes with the closely related indolo[3,2-c]quinolines N-(11H-indolo[3,2-c]quinolin-6-yl)-ethane-1,2-diamine (L1) and N′-(11H-indolo[3,2-c]quinolin-6-yl)-N,N-dimethylethane-1,2-diamine (L2) and indolo[3,2-d]benzazepines N-(7,12-dihydroindolo-[3,2-d][1]benzazepin-6-yl)-ethane-1,2-diamine (L3) and N′-(7,12-dihydroindolo-[3,2-d][1]benzazepin-6-yl)-N,N-dimethylethane-1,2-diamine (L4) of the general formulas [(η6-p-cymene)MII(L1)Cl]Cl, where M is Ru (4) and Os (6), [(η6-p-cymene)MII(L2)Cl]Cl, where M is Ru (5) and Os (7), [(η6-p-cymene)MII(L3)Cl]Cl, where M is Ru (8) and Os (10), and [(η6-p-cymene)MII(L4)Cl]Cl, where M is Ru (9) and Os (11), is reported. The compounds have been comprehensively characterized by elemental analysis, electrospray ionization mass spectrometry, spectroscopy (IR, UV–vis, and NMR), and X-ray crystallography (L1·HCl, 4·H2O, 5, and 9·2.5H2O). Structure–activity relationships with regard to cytotoxicity and cell cycle effects in human cancer cells as well as cyclin-dependent kinase (cdk) inhibition and DNA intercalation in cell-free settings have been established. The metal-free indolo[3,2-c]quinolines inhibit cancer cell growth in vitro, with IC50 values in the high nanomolar range, whereas those of the related indolo[3,2-d]benzazepines are in the low micromolar range. In cell-free experiments, these classes of compounds inhibit the activity of cdk2/cyclin E, but the much higher cytotoxicity and stronger cell cycle effects of indoloquinolines L1 and 7 are not paralleled by a substantially higher kinase inhibition compared with indolobenzazepines L4 and 11, arguing for additional targets and molecular effects, such as intercalation into DNA

    Improved synthesis of the [Ru(eta(6)-p-cymene)Cl3] anion: facile isolation under mild conditions

    No full text
    Reaction of [Ru(η6-p-cymene)Cl2]2 with two equivalents of [Ph4P][Cl] in CH2Cl2 yields [Ph4P][Ru(η6-p-cymene)Cl3], containing a trichlororuthenate(II) anion. In solution, an equilibrium between the product and [Ru(η6-p-cymene)Cl2]2 is observed, which in CDCl3 is nearly completely shifted to the dimer, whereas in CD2Cl2 essentially a 1:1-mixture of the two ruthenium species is present. Crystallization from CH2Cl2/pentane yielded two different crystals, which were identified by X-ray analysis as [Ph4P][Ru(η6-p-cymene)Cl3] and [Ph4P][Ru(η6-p-cymene)Cl3]⋅CH2Cl2

    Synthesis, Characterization, and in Vitro Evaluation of Novel Ruthenium(II) &eta;6-Arene Imidazole Complexes

    No full text
    Ten complexes of general formula [Ru(&eta;6-arene)Cl2(L)], [Ru(&eta;6-arene)Cl(L)2][X], and [Ru(&eta;6-arene)(L)3][X]2 (&eta;6-arene = benzene, p-cymene; L = imidazole, benzimidazole, N-methylimidazole, N-butylimidazole, N-vinylimidazole, N-benzoylimidazole; X = Cl, BF4, BPh4) have been prepd. and characterized by spectroscopy. The structures of five representative compds. have been established in the solid state by single-crystal X-ray diffraction. All the new compds. were assessed by the same in vitro screening assays applied to [imidazole-H][trans-RuCl4(DMSO)(imidazole)] (NAMI-A) and [Ru(&eta;6-arene)Cl2(1,3,5-triaza-7-phosphaadamantane)] (RAPTA) compds. It was found that the new compds. show essentially the same order of cytotoxicity as the RAPTA compds. toward cancer cells. Several of the compds. were selective toward cancer cells in that they were less (or not) cytotoxic toward nontumorigenic cells that are used to model healthy human cells. Thus, two of the compds., [Ru(&eta;6-p-cymene)Cl(vinylimid)2][Cl] (vinylimid = N-vinylimidazole) and [Ru(&eta;6-benzene)(mimid)3][BF4]2 (mimid = N-methylimidazole), have been selected for a more detailed in vivo evaluation

    Development of Ruthenium Antitumor Drugs that Overcome Multidrug Resistance Mechanisms

    No full text
    Organometallic ruthenium(II) complexes of the general formula [Ru(η6-p-cymene)Cl2(L)] and [Ru(η6-p-cymene)Cl(L)2][BPh4] with modified phenoxazine- and anthracene-based multidrug resistance (MDR) modulator ligands (L) have been synthesized, spectroscopically characterized, and evaluated in vitro for their cytotoxic and MDR reverting properties in comparison with the free ligands. For an anthracene-based ligand, coordination to a ruthenium(II) arene fragment led to significant improvement of cytotoxicity as well as Pgp inhibition activity. A similar, but weaker effect was also observed when using a benzimidazole-phenoxazine derivative as Pgp inhibitor. The most active compound in terms of both Pgp inhibition and cytotoxicity is [Ru(η6-p-cymene)Cl2(L)], where L is an anthracene-based ligand. Studies show that it induces cell death via inhibition of DNA synthesis. Moreover, because the complex is fluorescent, its uptake in cells was studied, and relative to the free anthracene-based ligand, uptake of the complex is accelerated and accumulation of the complex in the cell nucleus is observed

    Allosteric cross-talk in chromatin can mediate drug-drug synergy

    Get PDF
    Exploitation of drug-drug synergism and allostery could yield superior therapies by capitalizing on the immensely diverse, but highly specific, potential associated with the biological macromolecular landscape. Here we describe a drug-drug synergy mediated by allosteric cross-talk in chromatin, whereby the binding of one drug alters the activity of the second. We found two unrelated drugs, RAPTA-T and auranofin, that yield a synergistic activity in killing cancer cells, which coincides with a substantially greater number of chromatin adducts formed by one of the compounds when adducts from the other agent are also present. We show that this occurs through an allosteric mechanism within the nucleosome, whereby defined histone adducts of one drug promote reaction of the other drug at a distant, specific histone site. This opens up possibilities for epigenetic targeting and suggests that allosteric modulation in nucleosomes may have biological relevance and potential for therapeutic interventions

    Synthesis and anticancer activity of long-chain isonicotinic ester ligand-containing arene ruthenium complexes and nanoparticles

    No full text
    Arene ruthenium complexes containing long-chain N-ligands L1 = NC5H4-4-COO-C6H4-4-O-(CH2)9-CH3 or L2 = NC5H4-4-COO-(CH2)10-O-C6H4-4-COO-C6H4-4-C6H4-4-CN derived from isonicotinic acid, of the type [(arene)Ru(L)Cl2] (arene = C6H6, L = L1: 1; arene = p-MeC6H4Pr i , L = L1: 2; arene = C6Me6, L = L1: 3; arene = C6H6, L = L2: 4; arene = p-MeC6H4Pr i , L = L2: 5; arene = C6Me6, L = L2: 6) have been synthesized from the corresponding [(arene)RuCl2]2 precursor with the long-chain N-ligand L in dichloromethane. Ruthenium nanoparticles stabilized by L1 have been prepared by the solvent-free reduction of 1 with hydrogen or by reducing [(arene)Ru(H2O)3]SO4 in ethanol in the presence of L1 with hydrogen. These complexes and nanoparticles show a high anticancer activity towards human ovarian cell lines, the highest cytotoxicity being obtained for complex 2 (IC50 = 2 μM for A2780 and 7 μM for A2780cisR
    corecore