65 research outputs found

    Distinct Binding and Immunogenic Properties of the Gonococcal Homologue of Meningococcal Factor H Binding Protein

    Get PDF
    Neisseria meningitidis is a leading cause of sepsis and meningitis. The bacterium recruits factor H (fH), a negative regulator of the complement system, to its surface via fH binding protein (fHbp), providing a mechanism to avoid complement-mediated killing. fHbp is an important antigen that elicits protective immunity against the meningococcus and has been divided into three different variant groups, V1, V2 and V3, or families A and B. However, immunisation with fHbp V1 does not result in cross-protection against V2 and V3 and vice versa. Furthermore, high affinity binding of fH could impair immune responses against fHbp. Here, we investigate a homologue of fHbp in Neisseria gonorrhoeae, designated as Gonococcal homologue of fHbp (Ghfp) which we show is a promising vaccine candidate for N. meningitidis. We demonstrate that Gfhp is not expressed on the surface of the gonococcus and, despite its high level of identity with fHbp, does not bind fH. Substitution of only two amino acids in Ghfp is sufficient to confer fH binding, while the corresponding residues in V3 fHbp are essential for high affinity fH binding. Furthermore, immune responses against Ghfp recognise V1, V2 and V3 fHbps expressed by a range of clinical isolates, and have serum bactericidal activity against N. meningitidis expressing fHbps from all variant groups

    Theory and practice of social norms interventions: eight common pitfalls.

    Get PDF
    BACKGROUND: Recently, Global Health practitioners, scholars, and donors have expressed increased interest in "changing social norms" as a strategy to promote health and well-being in low and mid-income countries (LMIC). Despite this burgeoning interest, the ability of practitioners to use social norm theory to inform health interventions varies widely. MAIN BODY: Here, we identify eight pitfalls that practitioners must avoid as they plan to integrate a social norms perspective in their interventions, as well as eight learnings. These learnings are: 1) Social norms and attitudes are different; 2) Social norms and attitudes can coincide; 3) Protective norms can offer important resources for achieving effective social improvement in people's health-related practices; 4) Harmful practices are sustained by a matrix of factors that need to be understood in their interactions; 5) The prevalence of a norm is not necessarily a sign of its strength; 6) Social norms can exert both direct and indirect influence; 7) Publicising the prevalence of a harmful practice can make things worse; 8) People-led social norm change is both the right and the smart thing to do. CONCLUSIONS: As the understanding of how norms evolve in LMIC advances, practitioners will develop greater understanding of what works to help people lead change in harmful norms within their contexts. Awareness of these pitfalls has helped several of them increase the effectiveness of their interventions addressing social norms in the field. We are confident that others will benefit from these reflections as well

    MSH2/MSH6 Complex Promotes Error-Free Repair of AID-Induced dU:G Mispairs as well as Error-Prone Hypermutation of A:T Sites

    Get PDF
    Mismatch repair of AID-generated dU:G mispairs is critical for class switch recombination (CSR) and somatic hypermutation (SHM) in B cells. The generation of a previously unavailable Msh2−/−Msh6−/− mouse has for the first time allowed us to examine the impact of the complete loss of MutSα on lymphomagenesis, CSR and SHM. The onset of T cell lymphomas and the survival of Msh2−/−Msh6−/− and Msh2−/−Msh6−/−Msh3−/− mice are indistinguishable from Msh2−/− mice, suggesting that MSH2 plays the critical role in protecting T cells from malignant transformation, presumably because it is essential for the formation of stable MutSα heterodimers that maintain genomic stability. The similar defects on switching in Msh2−/−, Msh2−/−Msh6−/− and Msh2−/−Msh6−/−Msh3−/− mice confirm that MutSα but not MutSβ plays an important role in CSR. Analysis of SHM in Msh2−/−Msh6−/− mice not only confirmed the error-prone role of MutSα in the generation of strand biased mutations at A:T bases, but also revealed an error-free role of MutSα when repairing some of the dU:G mispairs generated by AID on both DNA strands. We propose a model for the role of MutSα at the immunoglobulin locus where the local balance of error-free and error-prone repair has an impact in the spectrum of mutations introduced during Phase 2 of SHM

    Multiple ATR-Chk1 Pathway Proteins Preferentially Associate with Checkpoint-Inducing DNA Substrates

    Get PDF
    The ATR-Chk1 DNA damage checkpoint pathway is a critical regulator of the cellular response to DNA damage and replication stress in human cells. The variety of environmental, chemotherapeutic, and carcinogenic agents that activate this signal transduction pathway do so primarily through the formation of bulky adducts in DNA and subsequent effects on DNA replication fork progression. Because there are many protein-protein and protein-DNA interactions proposed to be involved in activation and/or maintenance of ATR-Chk1 signaling in vivo, we systematically analyzed the association of a number of ATR-Chk1 pathway proteins with relevant checkpoint-inducing DNA structures in vitro. These DNA substrates included single-stranded DNA, branched DNA, and bulky adduct-containing DNA. We found that many checkpoint proteins show a preference for single-stranded, branched, and bulky adduct-containing DNA in comparison to undamaged, double-stranded DNA. We additionally found that the association of checkpoint proteins with bulky DNA damage relative to undamaged DNA was strongly influenced by the ionic strength of the binding reaction. Interestingly, among the checkpoint proteins analyzed the checkpoint mediator proteins Tipin and Claspin showed the greatest differential affinity for checkpoint-inducing DNA structures. We conclude that the association and accumulation of multiple checkpoint proteins with DNA structures indicative of DNA damage and replication stress likely contribute to optimal ATR-Chk1 DNA damage checkpoint responses

    Animal Models of Human Cerebellar Ataxias: a Cornerstone for the Therapies of the Twenty-First Century

    Full text link

    Suspected fibrocartilaginous embolism in a cat

    No full text
    A 12-year-old cat was presented to the University of Queensland's Small Animal Teaching Hospital with a 1-day history of left herniparesis of acute onset, with no evidence of trauma or toxin exposure. Neurological examination findings were consistent with a lesion in the caudal left cervical spinal cord (C6 to C8), which was non-painful and had not progressed since the onset of clinical signs. No other abnormalities were found, although myelography showed a mild swelling involving the caudal cervical and cranial thoracic spinal segments. A diagnosis of suspected fibrocartilaginous embolism was made on the basis of the history, clinical presentation and diagnostic tests results, making this case the first report of a suspected fibrocartilaginous embolism in a cat that returned to normal function
    corecore